• Title/Summary/Keyword: 응력경화모델

Search Result 90, Processing Time 0.022 seconds

Characteristics of Stress-Strain for Pocheon stone sludge (포천석분의 응력-변형률 거동특성)

  • Kim, Chan-Kee;Bak, Gueon-Jun;Cho, Won-Beom;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • In this study, a series of the isotropic compression-expansion tests and the Undrained triaxial tests were performed on low-plastic silt of Pocheon stone sludge. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data. In experimental results the deviator stress showed the work hardening behaviour after reaching its yield stress. Therefore practically useful failure criterion for low-plastic silt were required. The stress-strain behavior predicted by 11 soil parameters are compared with the results obtained 9 parameters by correlation between h and ${\eta}_1$ and constant ${\alpha}$. They are poor matched each other.

PWSCC of Alloy 600 components in PWRs-Part 2 (원자력 발전소 Alloy 600 부품의 PWSCC-Part 2)

  • Hwang, Seong Sik
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.12-23
    • /
    • 2013
  • 원자력 발전소 주요 부품에 사용되는 Alloy 600의 PWSCC 개시와 전파기구를 살펴보고 그 억제 기술을 소개하였다. ○ 균열은 경화된 표면 산화층이 깨질 경우, 입계부식, 공식(pitting), 열처리 또는 물속에 노출되었을 때 일어나는 선택부식(selective corrosion), MnS등 게재물의 용출등에 의해 시작된다. ○ 균열의 전파는 '느린 성장'과 '빠른 성장'으로 구별해 볼 수 있는데 빠른 균열성장은 균열 선단에서의 응력확대 계수(KI)가 균열이 전파하는 임계값(KIscc)을 넘는 경우에 일어난다. ○ Slip Dissolution/Film Rupture Model, Enhanced surface mobility model, Hydrogen assisted creep rupture, Internal oxidation 등의 모델이 제시되어 있으며 Internal oxidation 모델이 여러 실험자료로 잘 뒷 받침되고 있다. ○ PWSCC 억제 방안으로는 부식환경과의 격리 및 보수용접이 대표적이며 부품의 교체를 통한 안전 확보의 방안도 있다. 수소량 조절을 통한 억제 방안도 제시되어 있다. ○ Alloy 600 PWSCC열화 관리 전략프로그램은 결함 발생 가능성이 높은 부위 선정, 우선 순위에 따른 계획적인 검사, 결함이 발견될 경우 완화조치를 취하거나 필요시 교체/보수를 실시하고 그 운영프로그램을 지속적으로 갱신관리하는 방안으로 유지되어야 한다.

Thermal Deformation Analysis of L-shaped Composite During Cure Process by Viscoelastic Model (점탄성을 고려한 L-형상 복합재료 성형시 열변형 해석)

  • Seong, Dong-Yun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.220-227
    • /
    • 2020
  • When curing the composite, the fibers have little thermal deformation, but the resin changes its properties with time and temperature, which leads to residual stress in the product. Residual stress is caused by the difference in the coefficient of thermal expansion of the fibers and resin during the curing process and the chemical shrinkage of the resin. This difference causes thermal deformation such as spring-in and warpage. Thermal deformation of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In this study, a subroutine was developed to predict thermal deformation by applying 3-D viscoelastic model. The finite element analysis was verified by comparing the results of the plate analysis of the 2-D viscoelastic model. Spring-in of L-shaped structure was predicted and analyzed by applying the 3-D viscoelastic model.

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

An Analytical Study on Prestrain and Shape Memory Effect of Composite Reinforced with Shape Memory Alloy (형상기억합금 강화 복합재의 사전 변형률과 형상기억 효과에 대한 이론적 고찰)

  • 이재곤;김진곤;김기대
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.54-60
    • /
    • 2004
  • A new three-dimensional model for predicting the relationship between the prestrain of the composite and the amount of phase transformation of shape memory alloy inducing shape memory effect has been proposed by using Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory. The model composite is aluminum matrix reinforced with short TiNi fiber shape memory alloy, where the matrix is work-hardening material of power-law type. The analytical results predicted by the current model show that most of the prestrain is induced by the plastic deformation of the matrix, except the small prestrain region. The strengthening mechanism of the composite by the shape memory effect should be explained by excluding its increase of yield stress due to the work-hardening effect of the matrix.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures (재료비선형성을 고려한 R/C 구조물의 유한요소해석)

  • Choi, Chang Koon;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 1989
  • This paper concentrates on the analysis of reinforced concrete(R/C) structures subjected to monotonic loading, from zero to ultimate loads. Tensile cracking, the nonlinear stress-strain relationship for concrete and reinforcement are taken into account the concrete is assumed to be elastic in tension region and elasto-hardening plastic in compression region. The Kupfer's failure criteria and associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bar is considered as a elasto-hardening platic material. The tension stiffening effect of the concrete between cracks is also considered. The numerical error depends on the used finite element mesh size is reduced by correcting the slope of strain softening region of the concrete according to the developed energy criteria.

  • PDF

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.