• Title/Summary/Keyword: 응답변위법

Search Result 166, Processing Time 0.025 seconds

Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 윤종구;김동수;유제남
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.211-221
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of underground structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by directly integrating the ground-surface acceleration response spectrum of soil type S$_A$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.

Conservativeness of Response Displacement Method used in Seismic Response Analysis of Power Cable Tunnels (전력구의 지진응답해석법에 사용되는 응답변위법의 보수성 평가)

  • Lim, Jae-Sung;Yang, Dae-Seung;Hwang, Kyeong-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.243-254
    • /
    • 2021
  • In this study, the conservatism of the response displacement method (RDM) for the seismic response analysis of box-shaped power cable tunnels was evaluated. A total of 50 examples were used considering the cross-sections of 25 power cable tunnels and two soil conditions for each power cable tunnel. The following three methods were applied for the analysis by the RDM: (1) single cosine method, (2) double cosine method, and (3) dynamic free-field analysis method. A refined dynamic analysis method considering soil-structure interaction (SSI) was employed to compare the conservatism of the RDM. The double cosine method demonstrated the most conservative result, while the dynamic free-field analysis method yielded the least deviation. The soil stiffness reduction factor, C, for the double cosine method was recommended to be 0.9 and 0.7 for the operational performance and collapse prevention levels, respectively, to ensure a probability of at least 80% that the member force by the RDM is larger than that of dynamic SSI analysis.

Modification of Response Displacement Method for Seismic Design of Underground Structures under Domestic Conditions (국내 특성이 반영된 지하구조물의 내진설계를 위한 수정응답변위법)

  • 김명철;김영일;조우연;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 2004
  • In this study. the Modified Response Displacement Method(MRDM) for seismic design of underground box-type structures is proposed. Firstly, to investigate the applicability of the conventional RDM, various parametric studies are performed according to buried depth and soil conditions. Results from the conventional RDM are compared with those of time history analysis in terms of the maximum bending moment and relative displacement. The comparison shows that the velocity response spectrum and the determination method of foundation modulus which significantly influence the accuracy of RDM should be modified. Thus, the modified velocity response spectrum and the new determination method of foundation modulus are proposed under consideration of domestic conditions. In order to demonstrate the accuracy and validity of the proposed MRDM numerical analyses are performed according to different parameters such as depth of base rock, height and width of box, buried depth and soil condition. the comparison with the results of the time history analysis verifies the feasibility of the proposed MRDM for the seismic analysis.

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

Earthquake Response Analyses of Underground Structures Using Displacement Responses of Soil (응답변위법을 이용한 지중구조물의 지진해석)

  • Kim, Doo-Kie;Seo, Hyeong-Yeol;Park, Jin-Woo;Choe, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • This study performed earthquake response analyses of underground structures using displacement responses of soil. In this study, spring coefficients of surrounding soil proposed by specifications and researchers were adopted and then their corresponding analysis results were compared. The free field analyses using ProShake were carried out in order to predict ground responses of the field without underground structures. Several earthquakes such as El Centro, Ofunato, and Hachinohe earthquakes were considered to calculate maximum displacements. Numerical examples were analyzed, and then the results were compared and commented depending on spring coefficients of soil for the analyses using displacement responses of soil. The soil coefficients ranged from 0.05 to 14.39 times of those calculated by Korean Bridge Design Specification (2005). In conclusion, the coefficients of soil proposed by standard specifications seemed to be overestimated compared with those by the finite element method(FEM).

The Applications of Viscoelastic Dampers for Vibration control (고층건물의 진동제어를 위한 점탄성 감쇠기의 활용)

  • 김진구;홍성일;이경아;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • 복소모드 중첩법은 점탄성 감쇠기가 설치된 비비례 감쇠시스템의 정확한 동적 거동을 예측할 수 있는 방법이지만 많은 자유도를 갖는 고층건물의 해석시 고유치 해석과 모드중첩과정에서 많은 시간과 노력이 필요하게 된다. 본 논문에서는 효율적인 모형화를 위하여 강막가정과 행렬응축기법을 적용하고 구조물의 진동에 영향을 주는 주요모드의 선택을 위한 복소모드 응답참여계수를 제안하므로써 복소모드 중첩법의 효율성은 높였다. 또한 비비례 감쇠시스템에서 감쇠를 고려하여 응답스펙트럼을 재구성한후 선택된 주요 모드를 중첩하여 최대층간변위가 발생하는 곳에 감쇠기를 설치하였다 이 방법은 감쇠기가 설치된 구조물에 대하여 만족되는 수준의 최대층간변위가 발생할 때 까지 고유치 해석만을 반복.수행하면서 감쇠기를 연속적으로 설치하는 방법이다. 제안된 방법의 정확성과 효율성을 검토하기 위하여 예제 구조물의 대상으로 해석한 결과 응답의 정확성을 유지하면서 해석에 필요한 시간을 대폭 절감할 수 있었다.

  • PDF

Estimation of Interstory Drift for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System (등가 1자유도계를 이용한 철근콘크리트 골조건물의 층간변위 응답 산정)

  • Kang, Ho-Geun;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.25-33
    • /
    • 2004
  • To evaluate the seismic capacity of a multistorey building structures in performance based seismic design, it is needed to convert MDOF model into equivalent SDOF model. This paper presents predictions for interstory drift of multistorey structures using method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through performing nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. Comparing the interstory drift of multistorey structures calculated by time history analysis and those evaluated by an equivalent SDOF model, the adequacy and the validity of converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. Inelastic first mode shapes are expected to be more accurate than elastic first mode shapes in obtaining interstory drift of multistorey structures from equivalent SDOF model.