• Title/Summary/Keyword: 음향 모델링

Search Result 421, Processing Time 0.025 seconds

Sound Intensity Measurement in Near Field of Thin Plate Using Strain Gauge Bridge (스트레인 게이지 브리지를 이용한 얇은 평판의 근접장 음향 인텐시티 측정 방법론)

  • 김용조;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.71-76
    • /
    • 1996
  • 스트레인 게이지 브리지와 한개의 진동변위 탐촉자를 이용하여 평판의 근접장에서 음향 인텐시티를 측정하는 방법에 대하여 설명하였다. 또한 구조감쇠의 모델링을 통하여 음향방사파워에 대한 내부손실파워의 비를 나타내는 계수를 정의하여 내부손실파워의 정도를 평가하는 척도로 사용할 수 있음을 설명하였다. 임의의 경계조건을 가지는 평판에서 2개의 마이크로폰과 1개의 가속계를 이용하여 근사적으로 측정된 음향 인텐시티와 본고에서 제시한 방법으로 측정한 음향 인텐시티가 거의 일치함을 보이므로써 제시된 측정방법의 타당성을 검증하였다. 실험에 사용된 계(system)는 일반적인 해석에서 유체부하를 무시할 수 있는 계로 평판내부의 에너지 흐름에 비하여 외부로 방사되는 소음의 에너지 흐름이 매우 작기 때문에 평판내부의 에너지 흐름으로부터 방사되는 소음의 에너지 흐름을 알아내는 것이 매우 어려울 것으로 예상되었으나 본고에 제시된 방법으로 좋은 결과를 얻을 수 있었다. 앞으로 본 방법의 측정 오차에 대한 면밀한 고찰이 있어야 할 것이다. 그리고 평판의 내부손실이 비교적 큰 경우에 본 방법의 실험적으로 검증이 필요할 것이다. 또한 실질적인 문제에 응용되어 얼마만큼 유용한 정보를 제공할 것인가를 살펴보아야 할 것이다.

  • PDF

Underwater Acoustic Barrier with Passive Ocean Time Reversal and Application to Underwater Detection (수동형 해양 시역전 수중음향장벽과 수중탐지에의 응용)

  • Shin, Keecheol;Kim, Jeasoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.551-560
    • /
    • 2012
  • Target detection by acoustic barrier method includes active and passive sonar technique and time reversal process whose theoretical background is already well defined. In this paper, the concept and theory of underwater detection by passive ocean time reversal is established. Also, the reason that this study was conducted was to investigate feasibility of complex mathematical modeling to provide some predictive capability for underwater acoustic barrier with passive time reversal. It may eventually lead to a useful predictive tool when designing underwater acoustic barrier detection system using the passive time reversal concept.

Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling (정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2001
  • This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.

  • PDF

Sinusoidal Modeling of Polyphonic Audio Signals Using Dynamic Segmentation Method (동적 세그멘테이션을 이용한 폴리포닉 오디오 신호의 정현파 모델링)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.58-68
    • /
    • 2000
  • This paper proposes a sinusoidal modeling of polyphonic audio signals. Sinusoidal modeling which has been applied well to speech and monophonic signals cannot be applied directly to polyphonic signals because a window size for sinusoidal analysis cannot be determined over the entire signal. In addition, for high quality synthesized signal transient parts like attacks should be preserved which determines timbre of musical instrument. In this paper, a multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in sinusoidal modeling a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. The improved dynamic segmentation is proposed which shows better performance about transients and reduced computation. For various polyphonic audio signals the result of simulation shows the suggested sinusoidal modeling can model polyphonic audio signals without loss of perceptual quality.

  • PDF

Physical Modeling of Plucked String Based on Fixed Spatial Sampling Interval (고정된 공간 축 샘플링 간격을 적용한 뜯는 현악기의 현에 관한 물리적 모델링)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In physical modeling of plucked string instruments, the vibration of a string is typically simulated by the linear system. Currently the Digital Waveguides of J.O.Smith[1] are widely used to get a high quality sound of the plucked string instrument. He used the wave equation to derive the Digital Waveguides and emphasized the time variable. In this thesis, new model of plucked string is proposed to improve the sound quality emphasizing the spatial variable of the wave equation. In our model, we used the fixed sampling interval which is not dependent on the speed of the wave. So we could get more detailed description of wave movement by the time variable. As a result, the new model could produce a higher quality sound of plucked string instrument.

  • PDF

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

Development of Simulator to Electronic Ballast for HID Lamp (HID Lamp용 전자식 안정기의 시뮬레이터 개발)

  • 장목순;조계현;조호찬;박종연
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The electronic ballast have much more shaking of arc than magnetic ballast because of acoustic resonance phenomenon. but it has used mare than before. In this paper, we made metal halide lamp modeling by modifying modeling of mercury lamp. To avoid acoustic resonance phenomenon, We calculated acoustic resonance frequency band. We proposed design of LCC circuit. Also, electronic ballast simulator for metal halide lamp was developed by simulink LCC parameters of inverter was decided on the basis of simulation results. After development of prototype ballast, it was verified the characteristics of simulator.

Derivation of Parameters for Loudspeaker with Frequency Dependent Terms and Discussion for Estimation Methods (라우드스피커 주파수 종속 매개변수 유도 및 규명법 비교)

  • Park, Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.276-285
    • /
    • 2007
  • In this paper it was discussed and compared measured loudspeaker impedance curve with ones reconstructed by TS parameters estimated using four kinds of parameter estimation methods developed in frequency domain. Frequency dependent parameters were introduced and derived using least square error minimization technique. For known dynamic mass TS parameter estimation methods were reviewed and also proved non-uniqueness of these parameters by simulation method. Minimum phase transformation was adopted to derive phase information from magnitude of loudspeaker electrical impedance curve measured by one channel analyzer.

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Acoustic Model Improvement and Performance Evaluation of the Variable Vocabulary Speech Recognition System (가변 어휘 음성 인식기의 음향모델 개선 및 성능분석)

  • 이승훈;김회린
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.3-8
    • /
    • 1999
  • Previous variable vocabulary speech recognition systems with context-independent acoustic modeling, could not represent the effect of neighboring phonemes. To solve this problem, we use allophone-based context-dependent acoustic model. This paper describes the method to improve acoustic model of the system effectively. Acoustic model is improved by using allophone clustering technique that uses entropy as a similarity measure and the optimal allophone model is generated by changing the number of allophones. We evaluate performance of the improved system by using Phonetically Optimized Words(POW) DB and PC commands(PC) DB. As a result, the allophone model composed of six hundreds allophones improved the recognition rate by 13% from the original context independent model m POW test DB.

  • PDF