• Title/Summary/Keyword: 음향 공진

Search Result 296, Processing Time 0.028 seconds

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

A Study on Sound Radiation From Infinite Beams Under the Action of Moving Harmonic Point Forces (조화집중이동하중을 받는 무한보에서의 음향방사에 관한 연구)

  • 김병삼;태신호;홍동표
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 1993
  • 조화집중이동하중을 받는 무한보에서의 음향방사에 대한 연구는 선박, 비행기, 타이어 트레드 밴느 등과 같은 계의 설계시 계의 구조물로부터 발생하는 소음에 대한 해결방안을 제시해 준다. 구조물 표면에 발생하는 음향파워는 svktnqusghks방법을 이용하여 보의 전길이에 분포된 음향 인텐시티를 적분하여 구한다. 보의 표면에서 발생하는 음향파원는 미하수, 장력, 감쇠계수, 기초강성계수, 그리고 파수비에 의해서 결정된다. 각 인자에 따른 음향파워에 대한 정성적인 분석을 수행하기 위해 심프슨 적분방법을 이용하여 수치적분을 하였다. 무한보에 작용하는 유체하중에 3다라 진동에너지가 음향에너지로 변환되는 비율이 달라진다. 밀도가 큰 유체는 등가감쇠로 작용하여 보로부터 방사된 음향에너지는 빠르게 감소된다. 하중의 이동에 의하여 도플러이동효과가 발생하여 무한보의 공진부근에서의 음향파워 파크가 분리되고 보의 기초감쇠의 영향으로 음향에너지는 감소된다.

  • PDF

Theoretical Study on the Effects of the Withdrawal Weighting on the Performance of Resonator Type SAW Filters (공진기형 SAW 필터에 위드로월 가중법이 미치는 효과에 대한 이론적 연구)

  • 이영진;이승희;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • This paper proposes a new improved lumped element equivalent circuit analysis method to analyze withdrawal weighted SAW resonators of irregular electrode configurations, which enables to calculate the frequency response of withdrawal weighted SAW resonators. This method has led to the derivation of Smith equivalent circuit's y-parameters for a single ground electrode and formulated the resonator's admittance by calculating the total current into an IDT assembly. To illustrate the effectiveness of the technique, this method was applied to the design of a simple ladder filter and the change of the filter performance was investigated in relation to the weighting of the series and parallel resonators, respectively. The results shows that the withdrawal weighted resonator ladder filters provide better performance in their bandwidth and transition characteristics than normal ones. This new equivalent circuit analysis method can also serve as a better tool to design and analyze general SAW resonator filters.

Broadband Transmission Noise Reduction Performance of Smart Panels Featuring Piezoelectric Shunt Damping and Passive Characteristics (압전감쇠와 수동적 특성을 갖는 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;김재환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2002
  • The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing material is bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to tune the piezoelectric shunt circuit, the measured electrical impedance model is adopted. Resonant shunt circuit composed of register and inductor in stories is considered and the circuit parameters are determined based on maximizing the dissipated energy through the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a square crosses sectional tunnel and a loud speaker is mounted at one side of the tunnel as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across the panels is measured. Noise reduction performance of a double smart panel possessing absorbing material and air gap shows a good result at mid frequency region except the first resonance frequency. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber (예혼합실을 갖는 연소-노즐 시스템의 음향장 해석)

  • Yoon, Myunggon;Kim, Jina;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-53
    • /
    • 2017
  • This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

Towards reducing acoustical high-frequency noise of a direct current relay via contact structure (직류 계전기의 접촉구조에 의한 고주파수 소음저감)

  • Junhyeok, Yang;Jongseob, Won;Wonjin, Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.691-697
    • /
    • 2022
  • In this work, a straightforward component design of a direct current (DC) relay equipped in electric vehicles is discussed. The work aims to provide and evaluate effective measures for reducing high-frequency sound from the DC relay carrying electric power. From the operation experiments for the relay, it is observed that noise is caused by the resonance from the forced vibration by the electromagnetic repulsive force originating at the area of electric contacts with a resonance frequency of around 710 Hz ~ 730 Hz. A finite element model for the relay was established to conduct vibration mode analysis, consisting of stationary and movable contacts and a contact spring. Vibration mode analysis indicates that in the resonance frequency, the movable contact with two-point contacts experiences rotational vibration mode. For the proposed relay with a three-point contact, vibration mode analyses give reasonable results of reducing noise at that frequency. Furthermore, for the fabricated relays with the three-point contact, similar results have been obtained. In conclusion, one can see that the proposed measures provide one of the feasible solutions to the reduction of relay noise.

Acoustic Modeling in a Gas Turbine Combustor with Backflow Using a Network Aproach (역류형 가스터빈 연소기에서 네트워크 접근법을 이용한 음향장 모델링)

  • Son, Juchan;Hong, Sumin;Hwang, Jeongjae;Kim, Min Kuk;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • In this work, we have developed a 1D network model aimed at predicting eigenvalues for resonance frequency analysis in a lab-scale industrial gas turbine single nozzle combustion system. Modern industrial gas turbines generally adopt combustors with very complex geometry and flow path to meet various design requirements simultaneously. The current study has developed a network model for combustion systems with backflow at the same axial location. The modeling results of resonance frequencies and mode distributions for a given system using the network model were validated from comparisons with prediction results using a 3D Helmholtz solver.

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

The Study of the Characteristics of Radiation Efficiency from the Point-Excited Cylindrical Shell under the Free Ends (점-조화 가진에 의한 양단 자유지지 경계 조건을 갖는 원통 셸의 방사 효율 특성에 관한 연구)

  • 김관주
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.103-106
    • /
    • 1998
  • 본 논문은 상용 FEM-BEM 프로그램을 사용하여 점-조화 가진(harmonic point excitation)에 의한 자유지지 경계 조건을 갖는 원통 셸(cylindrical shell)의 방사 효율(radiation efficiency) 실험의 결과와 비교하였다. 우선 충격 해머 실험(impact hammer test)을 통한 모드 시험(modal testing)으로 원통 셸의 공진 주파수(natural frequency)와 모드 형상(mode shape)의 특징을 살펴보고 다음으로 점-조화 가진에 의한 원통 셸의 방사 효율을 SYSNOISE와 ANSYS로 해석해 보았다. 동시에 음향 세기 실험을 통한 방사 효율을 측정하여 전산 해석의 결과와 실험의 결과를 비교해 보았다.

  • PDF