• Title/Summary/Keyword: 음향현미경

Search Result 53, Processing Time 0.021 seconds

A study on the characteristic of material using V(z) curve of acoustic microscope (음향현미경의 V(z)곡선을 이용한 재료의 특성에 관한 연구)

  • Moon, G.;Ko, D.S.;Jun, K.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.65-73
    • /
    • 1988
  • In this paper, V(z) curve has been analyzed theoretically and compared with the experimental result, and the relation between the V(z) curve and the material characteristic has been studied. Angular spectrum and ray optics theory have been used for theoretical analysis and the acoustic microscope operating at a center frequency of 3 MHz has been used for experiment. In experiment, it has been shown that each material has a V(z) curve of a unique form and the interval of dips appearing in the V(z) curves have been used to determine the Rayleigh wave velocity.

  • PDF

Determination of the Effective Elastic Constants of a Superlattice Film by Measuring SAW Velocities (표면탄성파 전파속도 측정에 의한 초격자 다층박막의 유효탄성계수 결정)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.41-45
    • /
    • 2000
  • The effective elastic constants of a single-crystal superlattice film have been determined by two methods based on the velocities of surface acoustic waves (SAW). One method uses formulas to calculate the effective elastic constants of a superlattice from the known elastic constants of the constituent layers. The calculated effective elastic constants are tested by comparing the corresponding SAW velocities calculated for thin-film/substrate systems with the corresponding SAW velocities measured by line-focus acoustic microscopy (LFAM). The other method determines the effective elastic constants of the superlattices by inverting the SAW velocity dispersion data measured by LFAM. The results of both methods applied to a TiN/NbN superlattice film are in good agreement.

  • PDF

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Determination of Elastic Modulus of Equal-Channel-Angular-Pressed Aluminum 5052 Alloy by Acoustic Material Signature (음향재료신호를 이용한 강소성변형된 알루미늄 5052 합금의 탄성계수 측정)

  • Kim, Chung-Seok;Park, Ik-Keun;Jhang, Kyoung-Young;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.146-154
    • /
    • 2010
  • The effects of severe plastic deformation, equal channel angular pressing, and annealing of Al 5052 alloy on elastic modulus have been studied. The AI 5052 alloy was plastically deformed by ECAP method after solution treatment, and then finally annealing heat treated. Elastic modulus was measured by conventional tensile and nano-indentation test, and also measured on the surface of the specimen using acoustic material signature of the acoustic microscope. The variation in the elastic modulus influenced by plastic deformation and heat treatment, inaccessible by the conventional techniques, was successfully measured by acoustic material signature and obtained the elastic modulus depending on crystal orientation at each grain.

The Enhancement of the Acoustic Image by Combining Bases of Support for SFR (Spatial Frequency Response) (공간주파수응답의 기저대역 확장에 의한 초음파영상의 개선)

  • Song, Dae-Geon;Oh, Tong-In;Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.408-417
    • /
    • 2003
  • In this paper, we have studied the enhancement of the acoustic image by combining bases of support for SFR (Spatial Frequency Response) taken at multi-frequencies. The scanning acoustic microscope system have been constructed using the quadrature detector that is able to measure the amplitude and phase of the reflected signal simultaneously. Both real and quadrature components of reflected signal have been acquired at 4.4 ㎒ to 5.6 ㎒ reliably and accurately. In this experimental result, better depth resolution can be obtained by numerically combining images taken at several different frequencies. Image intensity have been better about 3.4 times at multi-frequency than one at a single frequency.

Acoustic Emission Applied to Real-time Monitoring of Submerged Arc Cladding Quality (서브머지드 아크 클래딩의 실시간 품질감시를 위한 음향방출 진단 기술)

  • ;;Shan-Ping Lu
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.318-321
    • /
    • 2001
  • 클래딩은 주요 산업분야에 내마모성, 내부식성의 향상을 위해 사용되고 있다. 그러나 클래딩 공정에서는 모재와 클래딩 재료의 물리적, 화학적 특성의 차이와 여러 가지 공정 변수의 영향으로 제품의 사용에 치명적인 손상을 줄 수 있는 균열, 슬래그 개재물, 기공등의 불연속이 발생하기 쉽다. 본 연구에서는 클래딩 시에 발생되는 불연속을 실시간으로 검출하는데 아주 우수한 검출능력을 갖고 있는 비파괴 검사 방법인 음향방출시험을 적용하고 검출된 신호에 대한 주파수 분석과 2차원 위치표정을 실시하여 균열, 기공 등의 불연속을 검출하였고 이를 주사전자현미경을 통하여 확인하였다. 음향방출법에 의해 클래딩부에서 발생하는 결함에 대한 실시간 평가가 가능함을 입증하였으며, 특히 다층 클래딩이나 넓은 면적의 클래딩시에 불연속을 가장 신속하게 감지할 수 있으므로 이를 생산공정에 활용한다면 클래딩 또는 용접부 품질감시를 위한 효과적인 방법이 될 것이다.

  • PDF

Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading (열하중을 받는 복합재료 적층판의 손상에 대한 열-음향방출해석)

  • Kim, Young-Bok;Min, Dae-Hong;Lee, Deok-Bo;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.261-268
    • /
    • 2001
  • An investigation on nondestructive evaluation of thermal stress-nduced damage in the composite laminates (3mm in thickness and $[+45_6/-45_6]_s$ lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classily the thermo-AE as three different types to estimate the damage processes of the composites.

  • PDF

Detection and Evaluation of Microdamages in Composite Materials Using a Thermo-Acoustic Emission Technique (열-음향방출기법을 이용한 복합재료의 미세손상 검출 및 평가)

  • 최낙삼;김영복;이덕보
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Utilizing a thermo-acoustic emission (AE) technique, a study on detection and evaluation of microfractures in cross-ply laminate composites was performed. Fiber breakages and matrix fractures formed by a cryogenic cooling at $-191^{\circ}C$ were observed with ultrasonic C-scan, optical and scanning electron microscopy. Those microfractures were monitored in a non-destructive in-situ state as three different types of thermo-AE signals classified on the basis of Fast-Fourier Transform and Short-Time Fourier Transform. Thus, it was concluded that real-time estimation of microfracture processes being formed during cryogenic cooling could be accomplished by monitoring such different types of thermo-AEs in each time-stage and then by analyzing thermo-AE behaviors for the respective AE types on the basis of the AE signal analysis results obtained during thermal heating and cooling load cycles.

Analysis of the Fracture Behavior of Plate-type Piezoelectric Composite Actuators by Acoustic Emission Monitoring (음향방출법을 이용한 평판형 압전 복합재료 작동기의 파괴거동 해석)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.220-230
    • /
    • 2006
  • Fracture behavior of a monolithic PZT and a plate-type piezoelectric composite actuator (PCA) has been investigated under a bending load at three points by an acoustic emission (AE) monitoring. AE signal from a monolithic PZT at the maximum bending load shows the characteristics of high amplitude and long duration with a low frequency band of $100{\sim}230kHz$ which is confirmed by fast Fourier transform (FFT). For a PCA, it is concluded that AE signals with high amplitude over 80dB and low dominant frequency band of $170{\sim}223kHz$ emitted in the stage I are due to the brittle fracture in the PZT layer and the delamination between the PZT layer and the adjacent fiber composite layer. Based on the above analysis of AE behavior and damage observations with an optical microscopy and a scanning electron microscopy, AE characteristics related to fracture behavior of asymmetrically laminated PCA have been elucidated.