Word segmentation errors occurring in text preprocessing often insert incorrect words into recognition vocabulary and cause poor language models for Korean large vocabulary continuous speech recognition. We propose an automatic word segmentation algorithm using Markov chains and syllable-based n-gram language models in order to correct word segmentation error in teat corpora. We assume that a sentence is generated from a Markov chain. Spaces and non-space characters are generated on self-transitions and other transitions of the Markov chain, respectively Then word segmentation of the sentence is obtained by finding the maximum likelihood path using syllable n-gram scores. In experimental results, the algorithm showed 91.58% word accuracy and 96.69% syllable accuracy for word segmentation of 254 sentence newspaper columns without any spaces. The algorithm improved the word accuracy from 91.00% to 96.27% for word segmentation correction at line breaks and yielded the decomposition accuracy of 96.22% for compound-noun decomposition.
Conventional keyword spotting systems use the connected word recognition network consisted by keyword models and filler models in keyword spotting. This is why the system can not construct the language models of word appearance effectively for detecting keywords in large vocabulary continuous speech recognition system with large text data. In this paper to solve this problem, we propose a keyword spotting system using pseudo N-gram language model for detecting key-words and investigate the performance of the system upon the changes of the frequencies of appearances of both keywords and filler models. As the results, when the Unigram probability of keywords and filler models were set to 0.2, 0.8, the experimental results showed that CA (Correctly Accept for In-Vocabulary) and CR (Correctly Reject for Out-Of-Vocabulary) were 91.1% and 91.7% respectively, which means that our proposed system can get 14% of improved average CA-CR performance than conventional methods in ERR (Error Reduction Rate).
A corpus-based lip sync algorithm for synthesizing natural face animation is proposed in this paper. To get the lip parameters, some marks were attached some marks to the speaker's face, and the marks' positions were extracted with some Image processing methods. Also, the spoken utterances were labeled with HTK and prosodic information (duration, pitch and intensity) were analyzed. An audio-visual corpus was constructed by combining the speech and image information. The basic unit used in our approach is syllable unit. Based on this Audio-visual corpus, lip information represented by mark's positions was synthesized. That is. the best syllable units are selected from the audio-visual corpus and each visual information of selected syllable units are concatenated. There are two processes to obtain the best units. One is to select the N-best candidates for each syllable. The other is to select the best smooth unit sequences, which is done by Viterbi decoding algorithm. For these process, the two distance proposed between syllable units. They are a phonetic environment distance measure and a prosody distance measure. Computer simulation results showed that our proposed algorithm had good performances. Especially, it was shown that pitch and intensity information is also important as like duration information in lip sync.
This paper describes an implementation of inverse filter using SVD in order to recover the input in multi-channel system. The matrix formulation in SISO system is extended to MIMO system. In time and frequency domain we investigates the inversion of minimum phase system and non-minimum phase system. To execute an effective inversion of non-minimum phase system, SVD is introduced. First of all we computes singular values of system matrix and then investigates the phase property of system. In case of overall system is non-minimum phase, system matrix has one (or more) very small singular value (s). The very small singular value (s) carries information about phase properties of system. Using this property, approximate inverse filter of overall system is founded. The numerical simulation shows potentials in use of the inverse filter.
In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.
SSL (Sound Source Localization) has been applied to several applications such as man-machine interface, video conference system, smart car and so on. But in the process of sound source localization, angle estimation error is occurred mainly due to the non-linear characteristics of the sine inverse function. So an approach was proposed to decrease the effect of this non-linear characteristics, which divides the microphone's covering space into narrow regions. In this paper, we proposed an optimal space dividing way according to the pattern of microphone array. In addition, sound source's 2-dimensional position is estimated in order to evaluate the performance of this dividing method. In the experiment, GCC-PHAT (Generalized Cross Correlation PHAse Transform) method that is known to be robust with noisy environments is adopted and triangular pattern of 3 microphones and rectangular pattern of 4 microphones are tested with 100 speech data respectively. The experimental results show that triangular pattern can't estimate the correct position due to the lower space area resolution, but performance of rectangular pattern is dramatically improved with correct estimation rate of 67 %.
This paper deals with the improvement of the synthesized speech quality and naturality in the Korean TTS(Text-to-Speech) system. We had extracted the parameters(table2) such as its amplitude, duration and pitch period in a syllable through the analysis of speech waveforms(table1) in the time domain and synthesized syllables using them. To the frequencies of the Korean pronunciation large vocabulary dictionary we had synthesized speeches selected 229 syllables such as V types are 19, CV types are 80. VC types are 30 and CVC types are 100. According to the 4 Korean syllable types from the data format dictionary(table3) we had tested each 15 syllables with the objective MOS(Mean Opinion Score) evaluation method about the 4 items i.e., intelligibility, clearness, loudness, and naturality after selecting random group without the knowledge of them. As the results of experiments the qualities of them are very clear and we can control the prosodic elements such as durations, accents and pitch periods (fig9, 10, 11, 12).
As Korean language can be phonemically classified according to the characteristic and structure of its pronunciation, Korean syllables can be divided into the phonemes such as consonant and vowel. The divided phonemes are analyzed by using the method of partial autocorrelation, and the order of partial autocorelation coefficient is 15. In analysis, it is shown that each characteristic of the same consonants, vowels, and end consonant in syllables in similar. The experiments is carried out by dividing 675 syllables into consonants, vowels, and end consonants. The recognition rate of consonants, vowels, end-consonants, and syllables are $85.0(\%)$, $90.7(\%)$, $85.5(\%)$and $72.1(\%)$ respectively. In conclusion, it is shown that Korean syllables, divided by the phonemes, are analyzed and recognized with minimum data and short processing time. Furthermore, it is shown that Korean syllables, words and sentences are recognized in the same way.
A fundamental assumption in conventional linear predictive coding (LPC) analysis procedure is that the input to an all-pole vocal tract filter is white process. In the case of periodic inputs, however, a pitch bias error is introduced into the conventional LP coefficient. Multi-pulse (MP) LP analysis can reduce this bias, provided that an estimate of the excitation is available. Since the prediction error of conventional LP analysis can be modeled as the sum of an MP excitation sequence and a random noise sequence, we can view extracting MP sequences from the prediction error as a classical detection and estimation problem. In this paper, we propose an algorithm in which the locations and amplitudes of the MP sequences are first obtained by applying a likelihood ratio test (LRT) to the prediction error, and LP coefficients free of pitch bias are then obtained from the MP sequences. To verify the performance enhancement, we iterate the above procedure with adaptive threshold at each step.
In this paper, we propose a vocal separation method using weighted ${\beta}$-order minimum mean wquare error estimation (WbE) based on kernel back-fitting algorithm. In spoken speech enhancement, it is well-known that the WbE outperforms the existing Bayesian estimators such as the minimum mean square error (MMSE) of the short-time spectral amplitude (STSA) and the MMSE of the logarithm of the STSA (LSA), in terms of both objective and subjective measures. In the proposed method, WbE is applied to a basic iterative kernel back-fitting algorithm for improving the vocal separation performance from monaural music signal. The experimental results show that the proposed method achieves better separation performance than other existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.