• Title/Summary/Keyword: 음절 수

Search Result 318, Processing Time 0.026 seconds

Variables affecting Korean word recognition: focusing on syllable shape (한글 단어 재인에 영향을 미치는 변인: 음절 형태를 중심으로)

  • Min, Suyoung;Lee, Chang H.
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.4
    • /
    • pp.193-220
    • /
    • 2018
  • Recent studies have demonstrated that word frequency, word length, neighborhood and word shape may have a role in visual word recognition. Shape information may affect word processing in different ways as Korean letter system works differently than that of English. The purpose of this study was to apply Gestalt's continuity principle to Korean alphabetic script(hangul), and to investigate the processing unit of hangul and to verify whether syllable shape affects word recognition in hangul. In experiment 1, three syllable words were utilized and two variables; 1) syllable types(horizontal syllable shape, e.g., "가". vertical syllable shape, e.g., "고") and 2) presenting direction (horizontal, vertical) were manipulated. Whereas "가" meets the criteria of Gestalt's continuity principle, "고" does not. Based on the result of lexical decision time, horizontal syllable shape type showed significant performance improvement, when compared to vertical syllable shape type, regardless of the presenting direction. In experiment 2, syllable types(horizontal syllable shape, vertical syllable shape) and the visual relationship between prime and target(identical, similar, different) were manipulated by using masked priming. There was a significant performance difference between the visual relationship of prime and target, and thus the effect of syllable shape was verified.

Aspects of Korean rhythm realization by second language learners: Focusing on Chinese learners of Korean (제 2언어 학습자의 한국어 리듬 실현양상 -중국인 한국어 학습자를 중심으로-)

  • Youngsook Yune
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.27-35
    • /
    • 2023
  • This study aimed to investigate the effect of Chinese on the production of Korean rhythm. Korean and Chinese are typologically classified into different rhythmic categories; because of this, the phonological properties of Korean and Chinese are similar and different at the same time. As a result, Chinese can exert both positive and negative influences on the realization of Korean rhythm. To investigate the influence of the rhythm of the native language of L2 learners on their target language, we conducted an acoustic analysis using acoustic metrics like of the speech of 5 Korean native speakers and 10 advanced Chinese Korean learners. The analyzed material is a short paragraph of five sentences containing a variety of syllable structures. The results showed that KS and CS rhythms are similar in %V, VarcoV, and nPVI_S. However, CS, unlike KS, showed characteristics closer to those of a stress-timed language in the values of %V and VarcoV. There was also a significant difference in nPVI_V values. These results demonstrate a negative influence of the native language in the realization of Korean rhythm. This can be attributed to the fact that all vowels in Chinese sentence are not pronounced with the same emphasis due to neutral tone. In this sense, this study allowed us to observe influences of L1 on L2 production of rhythm.

Improving Stack LSTMs by Combining Syllables and Morphemes for Korean Dependency Parsing (Stack LSTM 기반 한국어 의존 파싱을 위한 음절과 형태소의 결합 단어 표상 방법)

  • Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Kangil
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.9-13
    • /
    • 2016
  • Stack LSTM기반 의존 파싱은 전이 기반 파싱에서 스택과 버퍼의 내용을 Stack LSTM으로 인코딩하여 이들을 조합하여 파서 상태 벡터(parser state representation)를 유도해 낸후 다음 전이 액션을 결정하는 방식이다. Stack LSTM기반 의존 파싱에서는 버퍼 초기화를 위해 단어 표상 (word representation) 방식이 중요한데, 한국어와 같이 형태적으로 복잡한 언어 (morphologically rich language)의 경우에는 무수히 많은 단어가 파생될 수 있어 이들 언어에 대해 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있다. 본 논문에서는 Stack LSTM 을 한국어 의존 파싱에 적용하기 위해 음절-태그과 형태소의 표상들을 결합 (hybrid)하여 단어 표상을 얻어내는 합성 방법을 제안한다. Sejong 테스트셋에서 실험 결과, 제안 단어표상 방법은 음절-태그 및 형태소를 이용한 방법을 더욱 개선시켜 UAS 93.65% (Rigid평가셋에서는 90.44%)의 우수한 성능을 보여주었다.

  • PDF

A Segmentation Method of Compound Nouns Using Syllable Preference (선호 음절 정보를 이용한 복합명사의 분해 방법)

  • Park Chan-Ee;Ryu Bang;Kim Sang-Bok
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.151-159
    • /
    • 2006
  • The ratio of a segmentation algorithm of compound nouns causes an effect a lot in nouns which are not in the dictionary. The structure of Korean compound nouns are mostly derived from the Chinese characters and it includes some preference ratio. So it will be able to use segmentation rule of compound nouns. This paper suggests a segmentation algorithm using some preference ratio of Korean compound nouns which are not in the dictionary. The experiment resulted in getting 88.49% of correct segmentation and showed effective result from the comparative experimentation with other algorithm.

  • PDF

Automatic Word-Spacing of Syllable Bi-gram Information for Korean OCR Postprocessing (음절 Bi-gram정보를 이용한 한국어 OCR 후처리용 자동 띄어쓰기)

  • 전남열;박혁로
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.95-100
    • /
    • 2000
  • 문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한극어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bi-gram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분서고가 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.

  • PDF

Improving Stack LSTMs by Combining Syllables and Morphemes for Korean Dependency Parsing (Stack LSTM 기반 한국어 의존 파싱을 위한 음절과 형태소의 결합 단어 표상 방법)

  • Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Kangil
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.9-13
    • /
    • 2016
  • Stack LSTM기반 의존 파싱은 전이 기반 파싱에서 스택과 버퍼의 내용을 Stack LSTM으로 인코딩하여 이들을 조합하여 파서 상태 벡터(parser state representation)를 유도해 낸후 다음 전이 액션을 결정하는 방식이다. Stack LSTM기반 의존 파싱에서는 버퍼 초기화를 위해 단어 표상 (word representation) 방식이 중요한데, 한국어와 같이 형태적으로 복잡한 언어 (morphologically rich language)의 경우에는 무수히 많은 단어가 파생될 수 있어 이들 언어에 대해 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있다. 본 논문에서는 Stack LSTM 을 한국어 의존 파싱에 적용하기 위해 음절-태그과 형태소의 표상들을 결합 (hybrid)하여 단어 표상을 얻어내는 합성 방법을 제안한다. Sejong 테스트셋에서 실험 결과, 제안 단어 표상 방법은 음절-태그 및 형태소를 이용한 방법을 더욱 개선시켜 UAS 93.65% (Rigid평가셋에서는 90.44%)의 우수한 성능을 보여주었다.

  • PDF

Automatic Word-Spacing of Syllable Bi-gram Information for Korean OCR Postprocessing (음절 Bi-gram정보를 이용한 한국어 OCR 후처리용 자동 띄어쓰기)

  • Jeon, Nam-Youl;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.95-100
    • /
    • 2000
  • 문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한국어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bigram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분석과 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.

  • PDF

Correction for Hangul Normalization (올바른 한글 정규화를 위한 수정 방안)

  • Ahn, Dae-Hyuk;Park, Young-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.73-80
    • /
    • 2006
  • 현재 유니코드에서 한글텍스트의 정규화 기법은 완성형 현대한글 음절과 옛 한글을 표현하는 조합형 한글 그리고 호환 자모등과 같이 사용할 경우 원래의 글자와는 전혀 다른 글자의 조합을 만들어내는 문제점이 있다. 이러한 문제점은 호환 한글 자모 및 기호들의 잘못된 정규화 변환과 유니코드의 한글자모 조합 규칙에서 자모와 완성형 현대한글 음절을 다시 조합하여 한글음절로 사용 할 수 있게 허용한 때문이다. 이는 정규화 형식을 처음 작성할 당시 옛 한글의 사용을 고려하지 않았거나, 한글에 대한 올바른 이해가 부족한 상태에서 작성 된데 따른 결과라 하겠다. 따라서 본 연구에서는 유니코드 환경에서의 한글코드와 특히 최근 들어 Web을 비롯하여 XML과 IDN에서 필연적으로 사용하는 정규화에 따른 문제점을 파악하고 이들을 올바르게 처리하기 위한 정규화의 수정 방안과 조합형 한글의 조합규칙에 대한 수정 방안을 제안한다.

  • PDF

A Mobile Spam SMS Filtering System using Machine learning about syllable and the features of caller ID (발신번호 특징 및 음절단위 기계학습을 통한 모바일 스팸 SMS 필터링 시스템)

  • You, Hwan-il;Chae, Dong Kyu;Im, Eul-Gyu
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.219-222
    • /
    • 2011
  • 본 논문에서는 스팸 SMS 발신번호와 메시지 텍스트의 특징을 기계학습한 스팸 필터링 시스템을 논한다. 최근 변화하는 스팸SMS에 대한 적응력을 위해서, 각 트레이닝 셋의 수신 텍스트를 음절단위로 분석 할 것을 제안한다. 그리고 기존의 분류기는 성능이 미흡하거나 구현의 복잡성으로 인해 실제로 스펨 필터엔진으로 활용되지 않는 점을 극복하기 위해서 보다 단순한 분류기를 사용한다. 제안하는 시스템은 트레이닝 셋의 발신번호 및 수신 텍스트의 음절단위를 빈도수와 묶어 학습데이터를 구성하고, 테스트 셋을 스팸적 논스팸적으로 분석하여 스팸일 확률을 계산한다. 또한 Naive baysian를 바탕으로 한 경계값 기반 분류기를 통해, 타 분류기에 비해 구현 및 활용면에서 실용성이 높으면서도 성능이 뒤처지지 않는 시스템을 제안한다.

How to Use Effective Dictionary Feature for Deep Learning based Named Entity Recognition (딥러닝 기반의 개체명 인식을 위한 효과적인 사전 자질 사용 방법)

  • Kim, Hong-Jin;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.293-296
    • /
    • 2019
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간과 같이 고유한 의미를 갖는 단어들을 찾아 개체명을 부착하는 기술이다. 최근 개체명 인식기는 형태소 단위나 음절 단위의 입력을 사용하는 연구가 주로 진행되고 있다. 그러나 형태소 단위 개체명 인식은 미등록어를 처리하지 못하는 문제점이 존재하고 음절 단위 개체명 인식은 단어의 의미를 제대로 반영하지 못하는 문제점이 존재한다. 본 논문에서는 이 문제점을 보완하기 위해 품사 정보를 활용한 음절 단위 개체명 인식기를 제안한다. 또한 개체명 인식 성능에 큰 영향을 미치는 개체명 사전 자질을 더 효과적으로 사용할 수 있는 방법을 제안하며 이 방법을 사용했을 때 기존의 방법보다 향상된 개체명 인식 성능(F1-score 0.8576)을 보였다.

  • PDF