• Title/Summary/Keyword: 음절 수

Search Result 318, Processing Time 0.023 seconds

A study of /l/ velarization in American English based on the Buckeye Corpus (벅아이 코퍼스를 이용한 미국 영어의 /l/ 연구개음화 연구)

  • Sa, Jae-Jin
    • Phonetics and Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • It has been widely recognized that there are two varieties of lateral liquid /l/, which are light /l/ (a non-velarized allophone) and dark /l/ (a velarized allophone). However, this categorical view has been challenged in recent studies, both on articulatory and acoustic aspects. The purpose of this study is to investigate whether to consider /l/ velarization as a continuum in American English and provide supporting data. A spontaneous American English speech database called the Buckeye Speech Corpus was used for the material. The formant frequencies of /l/ in each syllable position were measured and analyzed statistically. The formant frequencies of /l/ in each syllable position, especially F2 values, were significantly different from each other. The results showed that there were other significantly different varieties of /l/ in American English, which support the continuum view on /l/ velarization. Regarding the effect of the adjacent vowel, the backness of the adjacent vowels was shown to affect the degree of /l/ velarization, regardless of the syllable position of the lateral liquid. This result will help provide a solid ground for the continuum view.

A Study on Syllable's and Prosodic Phrase's Boundaries in Korean Speech Signal (한국어 음성신호의 음절과 운율구 경계에 관한 연구)

  • Lee Kiyoung;Song Minsuck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.361-364
    • /
    • 1999
  • 한국어의 연속 음성 인식을 위하여 운율구 단위로 경계를 검출하는 연구가 진행되고 있다. 그 과정의 일부로서 본 연구에서는 여러 음향 특징들을 조합하여 연속음성에서 음절 경계의 검출하는 방법을 제시하였으며, 연속 음성으로부터 한국어 운율구인 강세구의 경계를 운율 특징만을 이용한 패턴 비교 방법을 이용하여 검출한 것과 비교 검토하였다. 그 결과, 패턴 비교 방법으로 검출한 강세구의 경계를 음절의 경계와 일치되도록 정렬해줄 필요가 있음을 알 수 있었다.

  • PDF

A Study on Methods of Speacker Adaptation for Speech Recognition (음성인식을 위한 화자적응화 기법에 관한 연구)

  • 이종연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.309.2-314
    • /
    • 1998
  • 본 연구에서는 음성인식을 위한 화자적응화 기법에 대해 연구하였다. 첫째로 적응화에 포함되지 않은 카테고리 음절에 대해 적응화 효과를 줄 수 있는 보간적응화 방법에 대해 연구하였다. 표준모델과 소량의 음성 데이터만으로 적응화가 가능한 MAPE(최대사후확률추정)으로 적응화한 모델의 평균벡터 변화정도를 적응화 발화에 포함되지 않은 모델에 보간적응하는 방법이다. 둘째로 음절단위 모델을 구축한 후 적응화 하고자 하는 화자의 데이터를 연결학습법과 Viterbi 알고리즘으로 음절단위의 추출을 자동화 한 후 MAPE으로 적응화하는 방법에 대해 각각 실험을 하였다.

  • PDF

시간특성을 고려한 음성신호의 발성율 검출에 관한 연구

  • 김익성;서지호;배명진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.109-111
    • /
    • 2004
  • 발성율은 일정한 시간동안 발성되는 음성신호 내에 몇 개의 음절이 포함되어 있는 지를 나타낸다. 발성율은 화자마다 다르고 각 음소들의 특징에 따라 변화할 수 있다. 발성율의 사전 측정이 이루어 진다면 음성부호화 측면에서도 중용한 정보로 사용될 수 있다. 기존의 음성부호화기는 발성율에 관계없이 고정적인 분석 구간을 정하여 전송률을 결정하고 있다. 따라서, 발성율을 미리 측정한다면, 발성율이 느린 부분과 빠른 부분에 각기 다른 부호화 방법을 적용하여 음질을 향상할 수도 있고 전송률을 가변적으로 적용할 수 도 있게 된다. 정확한 발성율을 측정하기 위해서는 음절의 변화를 추정하여야 한다. 음절의 변화를 추정하기 위한 방법으로 음성신호의 에너지 포락선 측정법과 LSP를 이용한 측정법이 각각 제안된 바 있으나, 본 논문에서는 위 두 가지 방법을 혼합한 방법을 사용하였다. 에너지 변동은 음성신호의 시간영역 처리방법으로 LSP 파라미터는 음성신호의 선형예측 분석에 의해 구해질 수 있다.

  • PDF

Korean Word Search App Using Meta-characters (메타문자를 사용한 한국어 사전 탐색 앱)

  • Kwon, Hong-Seok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.110-113
    • /
    • 2011
  • 스마트 폰의 보급이 대중화됨에 따라 다양한 앱들이 사용되고 있으나 효율적인 사전 탐색에 관한 앱은 그다지 많지 않다. 현재 공개된 한국어 사전 탐색 앱은 완전한 단어이거나 단어의 부분 문자열을 질의로 사용한다. 이 경우 완전한 단어를 기억하지 못하거나 한국어 정보처리를 위한 여러 형태의 음운 정보를 쉽게 탐색할 수 없다. 이러한 문제를 개선하기 위해 본 논문에서는 메타문자를 사용하여 효율적으로 단어를 탐색할 수 있는 앱을 개발한다. 본 논문에서 사용하는 메타문자는 임의의 음절을 표현하는 '*'와 '?'과 종성을 표현하는 ':'를 사용하며 사전구조는 자소 단위의 트라이를 사용한다. 또한 음절은 물론이고 자소(초성, 중성, 종성)로 구성된 질의를 탐색할 수 있다. 더구나 음절과 자소가 혼합된 질의도 사용할 수 있도록 하여 사용자의 편의를 크게 도모하였다.

  • PDF

Contextualized Embedding- and Character Embedding-based Pointer Network for Korean Coreference Resolution (문맥 표현과 음절 표현 기반 포인터 네트워크를 이용한 한국어 상호참조해결)

  • Park, Cheoneum;Lee, Changki;Ryu, Jihee;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.239-242
    • /
    • 2018
  • 문맥 표현은 Recurrent neural network (RNN)에 기반한 언어 모델을 학습하여 얻은 여러 층의 히든 스테이트(hidden state)를 가중치 합(weighted sum)을 하여 얻어낸 벡터이다. Convolution neural network (CNN)를 이용하여 음절 표현을 학습하는 경우, 데이터 내에서 발생하는 미등록어를 처리할 수 있다. 본 논문에서는 음절 표현 CNN 기반의 포인터 네트워크와 문맥 표현을 함께 이용하는 방법을 제안하고, 이를 상호참조해결에 적용한다. 실험 결과, 질의응답 데이터셋에서 CoNLL F1 57.88%로 규칙기반에 비하여 11.09% 더 좋은 성능을 보였다.

  • PDF

Automatic Syllable Segmentation Algorithm in Noise Additional Continuous Speech (잡음이 첨가된 연속음성에서의 자동 음절분할 알고리즘)

  • Kim, Young-Sub;Cha, Young-Dong;Kim, Chang-Keun;Lee, Kwang-Seok;Hur, Kang-In
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.17-20
    • /
    • 2006
  • 본 논문에서는 잡음이 첨가된 연속음성에서의 자동 음절분할을 위해 기존에 사용되고 있는 특징 파라미터인 단구간 에너지 이외에 잡음에 강인한 특성을 가지고 있는 새로운 특징인 스펙트럼 밀도비교척도와 의사역행렬을 이용한 선형판별함수를 제안한다. 기존에 사용되는 단구간 에너지는 잡음이 없는 환경에서는 좋은 성능을 나타내지만 잡음환경에서는 그렇지 못하다. 반면에 논문에서 제안한 척도들은 반대의 성능을 가지므로 주변잡음의 크기에 따라 각각의 파라미터를 적절한 가중치로 조합하는 음절구간 결정함수와 유한상태 머신을 추가로 사용면 무 잡음 환경뿐만 아니라, 잡음이 첨가된 연속음성에서도 일정수준 이상의 음절구간을 분리해 낼 수 있다.

  • PDF

A Jeongeum Combination Automaton for Windows Jeongeum IME (윈도우용 정음 입력기를 위한 정음 조합 자동 장치)

  • Kim, Ga-Youn;Byun, Jeong-Yong;Lee, Hana
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.225-227
    • /
    • 2018
  • 세계화가 진행되는 요즘, 외국어의 한글 표기 수요가 점차 증가하고 있다. 하지만 현대 한글은 11,172자 밖에 표현할 수 없는 반면 훈민정음은 약 399억 음절을 표현할 수 있다. 하지만 기존 컴퓨터 시스템에서의 훈민정음은 훈민정음 창제원리가 반영되어 있지 않아 약 399억 음절을 온전히 표현할 수 없다. 본 연구의 목적으로 약 399억 음절 입력이 가능한 윈도우용 정음 입력기를 구현하기 위해 기존 연구에 이어 정음 조합 자동 장치를 연구하고 구현하여 이식함에 있다.

  • PDF

The Processing Unit in Korean Words (한글 낱말의 처리 단위)

  • 이준석;김경린
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.221-239
    • /
    • 1989
  • The purpose of this study was to explore the processing unit in Korean word.Three experiments were conducted to examine this question.Preliminary experiment and Enperiment I were executed to delineate the processing unit in singles syllable word and Experiment 2,for words two or more syllables.The major finding of the preliminary experiment showed that the effect of the consonant type was not significant but that of the letter position was.Reaction time increased as the position of letter increased.The difference in reaction time between the first and the second position was not significant.However,the difference between the second and third was.In the Experiment 1, the effect of the number of letter was significant: reaction time increased as the number of letters increased.The size of the position effect both in the preliminary experiment and Experiment 1was comparable.Result of Experiment 2 was such that regardless of the presence of the final consonant(s),the reaction time incresased linearly as the number of svllables increased from two to four. The findings of the present study suggest that:(1)processing unit in single syllable Korean words is a syllable without the final consonant(s):(2) but in words of two or more syllables,the unit is likely to be a syllable with the final consonant(s).

Post-processing for Korean OCR Using Cohesive Feature between Syllables and Syntactic Lexical Feature (한국어의 음절 결합 특성 및 통사적 어휘 특성을 이용한 문자인식 후처리 시스템)

  • Hwang, Young-Sook;Park, Bong-Rae;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.175-182
    • /
    • 1997
  • 지금까지의 한글 문자인식 후처리 연구분야에서 미등록어와 비문맥적 오류 문제는 아직까지 잘 해결하지 못하고 있는 문제이다. 본 논문에서는 단어로서 가능한지를 결정하는 기준으로 확률적 음절 결합 정보를 사용하여 형태소 분석 기법만을 사용했을 때 발생할 수 있는 미등록어 문제를 해결하고, 통사적 기능의 어말 어휘를 고려한 문맥 결합 정보를 이용함으로써 다수의 후보 어절 가운데에서 최적의 후보 어절을 선택하는 방법을 제안한다. 제안된 시스템은 인식기에서 내보낸 후보 음절과 학습된 혼동 음절을 조합하여 하나 이상의 후보 어절을 생성하는 모듈과 통계적 언어 정보를 이용하여 최적의 후보 어절을 선정하는 모듈로 구성되었다. 실험은 1000만 원시 코퍼스에서 추출한 음절 결합 정보와 17만 태깅된 코퍼스에서 추출한 어절 결합 정보를 사용하였으며, 실제 인식 결과에 적용한 결과 문자 단위에서는 94.1%의 인식률을 97.4%로, 어절 단위에서는 87.6%를 96.6%로 향상시켰다. 교정률과 오교정률은 각각 문자 단위에서 56%와 0.6%, 어절 단위에서 83.9%와 1.66%를 보였으며, 전체 실험 어절의 3.4%를 차지한 미등록어 중 87.5%를 올바로 인식하는 한편, 전체 오류의 20.3%인 비문맥 오류에 대해서 91.6%를 올바로 교정하는 후처리 성능을 보였다.

  • PDF