It has been widely recognized that there are two varieties of lateral liquid /l/, which are light /l/ (a non-velarized allophone) and dark /l/ (a velarized allophone). However, this categorical view has been challenged in recent studies, both on articulatory and acoustic aspects. The purpose of this study is to investigate whether to consider /l/ velarization as a continuum in American English and provide supporting data. A spontaneous American English speech database called the Buckeye Speech Corpus was used for the material. The formant frequencies of /l/ in each syllable position were measured and analyzed statistically. The formant frequencies of /l/ in each syllable position, especially F2 values, were significantly different from each other. The results showed that there were other significantly different varieties of /l/ in American English, which support the continuum view on /l/ velarization. Regarding the effect of the adjacent vowel, the backness of the adjacent vowels was shown to affect the degree of /l/ velarization, regardless of the syllable position of the lateral liquid. This result will help provide a solid ground for the continuum view.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.361-364
/
1999
한국어의 연속 음성 인식을 위하여 운율구 단위로 경계를 검출하는 연구가 진행되고 있다. 그 과정의 일부로서 본 연구에서는 여러 음향 특징들을 조합하여 연속음성에서 음절 경계의 검출하는 방법을 제시하였으며, 연속 음성으로부터 한국어 운율구인 강세구의 경계를 운율 특징만을 이용한 패턴 비교 방법을 이용하여 검출한 것과 비교 검토하였다. 그 결과, 패턴 비교 방법으로 검출한 강세구의 경계를 음절의 경계와 일치되도록 정렬해줄 필요가 있음을 알 수 있었다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.309.2-314
/
1998
본 연구에서는 음성인식을 위한 화자적응화 기법에 대해 연구하였다. 첫째로 적응화에 포함되지 않은 카테고리 음절에 대해 적응화 효과를 줄 수 있는 보간적응화 방법에 대해 연구하였다. 표준모델과 소량의 음성 데이터만으로 적응화가 가능한 MAPE(최대사후확률추정)으로 적응화한 모델의 평균벡터 변화정도를 적응화 발화에 포함되지 않은 모델에 보간적응하는 방법이다. 둘째로 음절단위 모델을 구축한 후 적응화 하고자 하는 화자의 데이터를 연결학습법과 Viterbi 알고리즘으로 음절단위의 추출을 자동화 한 후 MAPE으로 적응화하는 방법에 대해 각각 실험을 하였다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.109-111
/
2004
발성율은 일정한 시간동안 발성되는 음성신호 내에 몇 개의 음절이 포함되어 있는 지를 나타낸다. 발성율은 화자마다 다르고 각 음소들의 특징에 따라 변화할 수 있다. 발성율의 사전 측정이 이루어 진다면 음성부호화 측면에서도 중용한 정보로 사용될 수 있다. 기존의 음성부호화기는 발성율에 관계없이 고정적인 분석 구간을 정하여 전송률을 결정하고 있다. 따라서, 발성율을 미리 측정한다면, 발성율이 느린 부분과 빠른 부분에 각기 다른 부호화 방법을 적용하여 음질을 향상할 수도 있고 전송률을 가변적으로 적용할 수 도 있게 된다. 정확한 발성율을 측정하기 위해서는 음절의 변화를 추정하여야 한다. 음절의 변화를 추정하기 위한 방법으로 음성신호의 에너지 포락선 측정법과 LSP를 이용한 측정법이 각각 제안된 바 있으나, 본 논문에서는 위 두 가지 방법을 혼합한 방법을 사용하였다. 에너지 변동은 음성신호의 시간영역 처리방법으로 LSP 파라미터는 음성신호의 선형예측 분석에 의해 구해질 수 있다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.110-113
/
2011
스마트 폰의 보급이 대중화됨에 따라 다양한 앱들이 사용되고 있으나 효율적인 사전 탐색에 관한 앱은 그다지 많지 않다. 현재 공개된 한국어 사전 탐색 앱은 완전한 단어이거나 단어의 부분 문자열을 질의로 사용한다. 이 경우 완전한 단어를 기억하지 못하거나 한국어 정보처리를 위한 여러 형태의 음운 정보를 쉽게 탐색할 수 없다. 이러한 문제를 개선하기 위해 본 논문에서는 메타문자를 사용하여 효율적으로 단어를 탐색할 수 있는 앱을 개발한다. 본 논문에서 사용하는 메타문자는 임의의 음절을 표현하는 '*'와 '?'과 종성을 표현하는 ':'를 사용하며 사전구조는 자소 단위의 트라이를 사용한다. 또한 음절은 물론이고 자소(초성, 중성, 종성)로 구성된 질의를 탐색할 수 있다. 더구나 음절과 자소가 혼합된 질의도 사용할 수 있도록 하여 사용자의 편의를 크게 도모하였다.
Park, Cheoneum;Lee, Changki;Ryu, Jihee;Kim, Hyunki
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.239-242
/
2018
문맥 표현은 Recurrent neural network (RNN)에 기반한 언어 모델을 학습하여 얻은 여러 층의 히든 스테이트(hidden state)를 가중치 합(weighted sum)을 하여 얻어낸 벡터이다. Convolution neural network (CNN)를 이용하여 음절 표현을 학습하는 경우, 데이터 내에서 발생하는 미등록어를 처리할 수 있다. 본 논문에서는 음절 표현 CNN 기반의 포인터 네트워크와 문맥 표현을 함께 이용하는 방법을 제안하고, 이를 상호참조해결에 적용한다. 실험 결과, 질의응답 데이터셋에서 CoNLL F1 57.88%로 규칙기반에 비하여 11.09% 더 좋은 성능을 보였다.
Kim, Young-Sub;Cha, Young-Dong;Kim, Chang-Keun;Lee, Kwang-Seok;Hur, Kang-In
Proceedings of the Korea Institute of Convergence Signal Processing
/
2006.06a
/
pp.17-20
/
2006
본 논문에서는 잡음이 첨가된 연속음성에서의 자동 음절분할을 위해 기존에 사용되고 있는 특징 파라미터인 단구간 에너지 이외에 잡음에 강인한 특성을 가지고 있는 새로운 특징인 스펙트럼 밀도비교척도와 의사역행렬을 이용한 선형판별함수를 제안한다. 기존에 사용되는 단구간 에너지는 잡음이 없는 환경에서는 좋은 성능을 나타내지만 잡음환경에서는 그렇지 못하다. 반면에 논문에서 제안한 척도들은 반대의 성능을 가지므로 주변잡음의 크기에 따라 각각의 파라미터를 적절한 가중치로 조합하는 음절구간 결정함수와 유한상태 머신을 추가로 사용면 무 잡음 환경뿐만 아니라, 잡음이 첨가된 연속음성에서도 일정수준 이상의 음절구간을 분리해 낼 수 있다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.225-227
/
2018
세계화가 진행되는 요즘, 외국어의 한글 표기 수요가 점차 증가하고 있다. 하지만 현대 한글은 11,172자 밖에 표현할 수 없는 반면 훈민정음은 약 399억 음절을 표현할 수 있다. 하지만 기존 컴퓨터 시스템에서의 훈민정음은 훈민정음 창제원리가 반영되어 있지 않아 약 399억 음절을 온전히 표현할 수 없다. 본 연구의 목적으로 약 399억 음절 입력이 가능한 윈도우용 정음 입력기를 구현하기 위해 기존 연구에 이어 정음 조합 자동 장치를 연구하고 구현하여 이식함에 있다.
The purpose of this study was to explore the processing unit in Korean word.Three experiments were conducted to examine this question.Preliminary experiment and Enperiment I were executed to delineate the processing unit in singles syllable word and Experiment 2,for words two or more syllables.The major finding of the preliminary experiment showed that the effect of the consonant type was not significant but that of the letter position was.Reaction time increased as the position of letter increased.The difference in reaction time between the first and the second position was not significant.However,the difference between the second and third was.In the Experiment 1, the effect of the number of letter was significant: reaction time increased as the number of letters increased.The size of the position effect both in the preliminary experiment and Experiment 1was comparable.Result of Experiment 2 was such that regardless of the presence of the final consonant(s),the reaction time incresased linearly as the number of svllables increased from two to four. The findings of the present study suggest that:(1)processing unit in single syllable Korean words is a syllable without the final consonant(s):(2) but in words of two or more syllables,the unit is likely to be a syllable with the final consonant(s).
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.175-182
/
1997
지금까지의 한글 문자인식 후처리 연구분야에서 미등록어와 비문맥적 오류 문제는 아직까지 잘 해결하지 못하고 있는 문제이다. 본 논문에서는 단어로서 가능한지를 결정하는 기준으로 확률적 음절 결합 정보를 사용하여 형태소 분석 기법만을 사용했을 때 발생할 수 있는 미등록어 문제를 해결하고, 통사적 기능의 어말 어휘를 고려한 문맥 결합 정보를 이용함으로써 다수의 후보 어절 가운데에서 최적의 후보 어절을 선택하는 방법을 제안한다. 제안된 시스템은 인식기에서 내보낸 후보 음절과 학습된 혼동 음절을 조합하여 하나 이상의 후보 어절을 생성하는 모듈과 통계적 언어 정보를 이용하여 최적의 후보 어절을 선정하는 모듈로 구성되었다. 실험은 1000만 원시 코퍼스에서 추출한 음절 결합 정보와 17만 태깅된 코퍼스에서 추출한 어절 결합 정보를 사용하였으며, 실제 인식 결과에 적용한 결과 문자 단위에서는 94.1%의 인식률을 97.4%로, 어절 단위에서는 87.6%를 96.6%로 향상시켰다. 교정률과 오교정률은 각각 문자 단위에서 56%와 0.6%, 어절 단위에서 83.9%와 1.66%를 보였으며, 전체 실험 어절의 3.4%를 차지한 미등록어 중 87.5%를 올바로 인식하는 한편, 전체 오류의 20.3%인 비문맥 오류에 대해서 91.6%를 올바로 교정하는 후처리 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.