• Title/Summary/Keyword: 음절 수

Search Result 318, Processing Time 0.026 seconds

A comparison study of the characteristics of pauses and breath groups during paragraph reading for normal female adults with and without voice disorders (정상성인 여성 화자와 음성장애 성인 여성 화자의 문단 낭독 시 휴지 및 호흡단락 특성의 비교)

  • Pyo, Hwa Young
    • Phonetics and Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.109-116
    • /
    • 2019
  • This study was conducted to identify the characteristics of pauses and breath groups made by normal adults and patients with voice disorders while reading a paragraph. Forty normal female adults and forty female patients with a functional voice disorder (18-45 yrs.) read the "Gaeul" paragraph with the "Running Speech" protocol of the Phonatory Aerodynamic System (PAS), by which the pauses with or without inspiration and between or within syntactic words and breath groups were analyzed. The number of pauses with inspiration was found to be higher in the patient group, but the number of pauses without inspiration was higher in the normal group. The rate of syntactic word boundaries with pauses with inspiration was higher in the patient group, while the number of syllables per breath group was higher in the normal group. As these results can be explained by patients' poor breath support due to glottal insufficiency, the question of whether voice disorder patients use their pauses and breath groups properly should be considered carefully in evaluation and intervention.

Advanced detection of sentence boundaries based on hybrid method (하이브리드 방법을 이용한 개선된 문장경계인식)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.61-66
    • /
    • 2009
  • 본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반 하여 개선된 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 음절을 대상으로 학습하여 문장경계 인식을 수행하였고, 문장경계인식 성능을 최대화 하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 다양한 기계학습 기반 분류 모델을 비교하여 최적의 분류모델을 선택하였으며, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다. 성능 실험은 다양한 형태의 문서별 성능 측정을 위해서 문어체와 구어체가 복합적으로 사용된 신문기사와 블로그 문서(평가셋1), 문어체 위주로 구성된 세종말뭉치와 백과사전 본문(평가셋2), 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 사이트의 게시판 글(평가셋3)을 대상으로 성능 측정을 하였다. 성능척도로는 F-measure를 사용하였으며, 구두점만을 대상으로 문장경계 인식 성능을 평가한 결과, 평가셋1에서는 96.5%, 평가셋2에서는 99.4%를 보였는데, 구어체의 문장경계인식이 더 어려움을 알 수 있었다. 평가셋1의 경우에도 규칙으로 후처리한 경우 정확률이 92.1%에서 99.4%로 올라갔으며, 이를 통해 후처리 규칙의 필요성을 알 수 있었다. 최종 성능평가로는 구두점만을 대상으로 학습된 기본 엔진과 모든 문장경계후보를 인식하도록 개선된 엔진을 평가셋3을 사용하여 비교 평가하였고, 기본 엔진(61.1%)에 비해서 개선된 엔진이 32.0% 성능 향상이 있음을 확인함으로써 제안한 방법이 웹 문서에 효과적임을 입증하였다.

  • PDF

A Study on Speech Recognition using Recurrent Neural Networks (회귀신경망을 이용한 음성인식에 관한 연구)

  • 한학용;김주성;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.62-67
    • /
    • 1999
  • In this paper, we investigates a reliable model of the Predictive Recurrent Neural Network for the speech recognition. Predictive Neural Networks are modeled by syllable units. For the given input syllable, then a model which gives the minimum prediction error is taken as the recognition result. The Predictive Neural Network which has the structure of recurrent network was composed to give the dynamic feature of the speech pattern into the network. We have compared with the recognition ability of the Recurrent Network proposed by Elman and Jordan. ETRI's SAMDORI has been used for the speech DB. In order to find a reliable model of neural networks, the changes of two recognition rates were compared one another in conditions of: (1) changing prediction order and the number of hidden units: and (2) accumulating previous values with self-loop coefficient in its context. The result shows that the optimum prediction order, the number of hidden units, and self-loop coefficient have differently responded according to the structure of neural network used. However, in general, the Jordan's recurrent network shows relatively higher recognition rate than Elman's. The effects of recognition rate on the self-loop coefficient were variable according to the structures of neural network and their values.

  • PDF

Lip and Voice Synchronization with SMS Messages for Mobile 3D Avatar (SMS 메시지에 따른 모바일 3D 아바타의 입술 모양과 음성 동기화)

  • Youn, Jae-Hong;Song, Yong-Gyu;Kim, Eun-Seok;Hur, Gi-Taek
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.682-686
    • /
    • 2006
  • There have been increasing interests in 3D mobile content service with emergence of a terminal equipping with a mobile 3D engine and growth of mobile content market. Mobile 3D Avatar is the most effective product displaying the character of a personalized mobile device user. However, previous studies on the method of expressing 3D Avatar have been mainly focused on natural and realistic expressions according to the change in facial expressions and lip shape of a character in PC based virtual environments. In this paper, we propose a method of synchronizing the lip shape with voice by applying a SMS message received in mobile environments to 3D mobile Avatar. The proposed method enables to realize a natural and effective SMS message reading service of mobile Avatar by disassembling a received message sentence into units of a syllable and then synchronizing the lip shape of 3D Avatar with the corresponding voice.

  • PDF

Phonetic Acoustic Knowledge and Divide And Conquer Based Segmentation Algorithm (음성학적 지식과 DAC 기반 분할 알고리즘)

  • Koo, Chan-Mo;Wang, Gi-Nam
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.215-222
    • /
    • 2002
  • This paper presents a reliable fully automatic labeling system which fits well with languages having well-developed syllables such as in Korean. The ASL System utilize DAC (Divide and Conquer), a control mechanism, based segmentation algorithm to use phonetic and acoustic information with greater efficiency. The segmentation algorithm is to devide speech signals into speechlets which is localized speech signal pieces and to segment each speechlet for speech boundaries. While HMM method has uniform and definite efficiencies, the suggested method gives framework to steadily develope and improve specified acoustic knowledges as a component. Without using statistical method such as HMM, this new method use only phonetic-acoustic information. Therefore, this method has high speed performance, is consistent extending the specific acoustic knowledge component, and can be applied in efficient way. we show experiment result to verify suggested method at the end.

Syllable Recognition of HMM using Segment Dimension Compression (세그먼트 차원압축을 이용한 HMM의 음절인식)

  • Kim, Joo-Sung;Lee, Yang-Woo;Hur, Kang-In;Ahn, Jum-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.40-48
    • /
    • 1996
  • In this paper, a 40 dimensional segment vector with 4 frame and 7 frame width in every monosyllable interval was compressed into a 10, 14, 20 dimensional vector using K-L expansion and neural networks, and these was used to speech recognition feature parameter for CHMM. And we also compared them with CHMM added as feature parameter to the discrete duration time, the regression coefficients and the mixture distribution. In recognition test at 100 monosyllable, recognition rates of CHMM +${\bigtriangleup}$MCEP, CHMM +MIX and CHMM +DD respectively improve 1.4%, 2.36% and 2.78% over 85.19% of CHMM. And those using vector compressed by K-L expansion are less than MCEP + ${\bigtriangleup}$MCEP but those using K-L + MCEP, K-L + ${\bigtriangleup}$MCEP are almost same. Neural networks reflect more the speech dynamic variety than K-L expansion because they use the sigmoid function for the non-linear transform. Recognition rates using vector compressed by neural networks are higher than those using of K-L expansion and other methods.

  • PDF

Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification (온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템)

  • Mun, Jung-Min;Song, Yeong-Ho;Jin, Ji-Hwan;Lee, Hyun-Seob;Lee, Hyun Ah
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.3
    • /
    • pp.263-278
    • /
    • 2015
  • Online Q&A for the National Institute of the Korean Language provides expert's answers for questions about the Korean language, in which many similar questions are repeatedly posted like other Q&A boards. So, if a system automatically finds questions that are similar to a user's question, it can immediately provide users with recommendable answers to their question and prevent experts from wasting time to answer to similar questions repeatedly. In this paper, we set 5 classes of questions based on its topic which are frequently asked, and propose to classify questions to those classes. Our system searches similar questions by combining topic similarity, vector similarity and sequence similarity. Experiment shows that our method improves search correctness with topic classification. In experiment, Mean Reciprocal Rank(MRR) of our system is 0.756, and precision for the first result is 68.31% and precision for top five results is 87.32%.

A Stochastic Word-Spacing System Based on Word Category-Pattern (어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템)

  • Kang, Mi-Young;Jung, Sung-Won;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.965-978
    • /
    • 2006
  • This paper implements an automatic Korean word-spacing system based on word-recognition using morpheme unigrams and the pattern that the categories of those morpheme unigrams share within a candidate word. Although previous work on Korean word-spacing models has produced the advantages of easy construction and time efficiency, there still remain problems, such as data sparseness and critical memory size, which arise from the morpho-typological characteristics of Korean. In order to cope with both problems, our implementation uses the stochastic information of morpheme unigrams, and their category patterns, instead of word unigrams. A word's probability in a sentence is obtained based on morpheme probability and the weight for the morpheme's category within the category pattern of the candidate word. The category weights are trained so as to minimize the error means between the observed probabilities of words and those estimated by words' individual-morphemes' probabilities weighted according to their categories' powers in a given word's category pattern.

Performance Comparison of Korean Dialect Classification Models Based on Acoustic Features

  • Kim, Young Kook;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.37-43
    • /
    • 2021
  • Using the acoustic features of speech, important social and linguistic information about the speaker can be obtained, and one of the key features is the dialect. A speaker's use of a dialect is a major barrier to interaction with a computer. Dialects can be distinguished at various levels such as phonemes, syllables, words, phrases, and sentences, but it is difficult to distinguish dialects by identifying them one by one. Therefore, in this paper, we propose a lightweight Korean dialect classification model using only MFCC among the features of speech data. We study the optimal method to utilize MFCC features through Korean conversational voice data, and compare the classification performance of five Korean dialects in Gyeonggi/Seoul, Gangwon, Chungcheong, Jeolla, and Gyeongsang in eight machine learning and deep learning classification models. The performance of most classification models was improved by normalizing the MFCC, and the accuracy was improved by 1.07% and F1-score by 2.04% compared to the best performance of the classification model before normalizing the MFCC.

Development of the video-based smart utterance deep analyser (SUDA) application (동영상 기반 자동 발화 심층 분석(SUDA) 어플리케이션 개발)

  • Lee, Soo-Bok;Kwak, Hyo-Jung;Yun, Jae-Min;Shin, Dong-Chun;Sim, Hyun-Sub
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • This study aims to develop a video-based smart utterance deep analyser (SUDA) application that analyzes semiautomatically the utterances that child and mother produce during interactions over time. SUDA runs on the platform of Android, iPhones, and tablet PCs, and allows video recording and uploading to server. In this device, user modes are divided into three modes: expert mode, general mode and manager mode. In the expert mode which is useful for speech and language evaluation, the subject's utterances are analyzed semi-automatically by measuring speech and language factors such as disfluency, morpheme, syllable, word, articulation rate and response time, etc. In the general mode, the outcome of utterance analysis is provided in a graph form, and the manger mode is accessed only to the administrator controlling the entire system, such as utterance analysis and video deletion. SUDA helps to reduce clinicians' and researchers' work burden by saving time for utterance analysis. It also helps parents to receive detailed information about speech and language development of their child easily. Further, this device will contribute to building a big longitudinal data enough to explore predictors of stuttering recovery and persistence.