Recommendation system plays a significant role on relieving difficulties of selecting information among rapidly increasing amount of information caused by the development of the Internet and on efficiently displaying information that fits individual personal interest. In particular, without the help of recommendation system, E-commerce and OTT companies cannot overcome the long-tail phenomenon, a phenomenon in which only popular products are consumed, as the number of products and contents are rapidly increasing. Therefore, the research on recommendation systems is being actively conducted to overcome the phenomenon and to provide information or contents that are aligned with users' individual interests, in order to induce customers to consume various products or contents. Usually, collaborative filtering which utilizes users' historical behavioral data shows better performance than contents-based filtering which utilizes users' preferred contents. However, collaborative filtering can suffer from cold-start problem which occurs when there is lack of users' historical behavioral data. In this paper, hybrid music recommendation system, which can solve cold-start problem, is proposed based on the playlist data of Melon music streaming service that is given by Kakao Arena for music playlist continuation competition. The goal of this research is to use music tracks, that are included in the playlists, and metadata of music tracks and playlists in order to predict other music tracks when the half or whole of the tracks are masked. Therefore, two different recommendation procedures were conducted depending on the two different situations. When music tracks are included in the playlist, LightFM is used in order to utilize the music track list of the playlists and metadata of each music tracks. Then, the result of Item2Vec model, which uses vector embeddings of music tracks, tags and titles for recommendation, is combined with the result of LightFM model to create final recommendation list. When there are no music tracks available in the playlists but only playlists' tags and titles are available, recommendation was made by finding similar playlists based on playlists vectors which was made by the aggregation of FastText pre-trained embedding vectors of tags and titles of each playlists. As a result, not only cold-start problem can be resolved, but also achieved better performance than ALS, BPR and Item2Vec by using the metadata of both music tracks and playlists. In addition, it was found that the LightFM model, which uses only artist information as an item feature, shows the best performance compared to other LightFM models which use other item features of music tracks.
Kim, Dong Jun;Lee, Ji Yeon;Jeong, Su Jin;Kim, Yoon Jea;Kim, Woongsup
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.789-791
/
2017
음악은 매장의 분위기를 결정짓는 중요한 요소이다. 그러나 현재 대부분의 매장에서는 음악 스트리밍 사이트에서 추천해주는 플레이리스트 혹은 개인의 취향에 의한 선곡이 이루어지고 있다. 이때 매장의 분위기와 적합하지 않는 곡이 선곡되는 경우가 발생하며 고객들로 하여금 불만스러운 경험을 제공할 수 있는 여지가 있다. 이에 본 연구는 기존의 음악 선곡 시스템을 고객 중심적으로 전환하고자 한다. 고객의 감정 분석, 상황 분석과 머신 러닝을 적용하여 현재 매장의 분위기와 어울리는 음악이 선곡되고 재생될 수 있도록 하는 것을 목표로 하고 있다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.229-231
/
2004
내용 기반 음악 검색 시스템은 사용자가 원하는 음악에 대해 사전 정보를 모르더라도 곡의 일부로 질의를 함으로써 원하는 결과를 얻을 수 있게 한다. 그러나 내용 기반 음악 검색 시스템은 사용자의 질의에 대해 결과에 대한 순위만을 제공할 뿐 사용자의 취향이나 선호도와 같은 개인 정보를 고려하지 않기 때문에 사용자가 충분히 만족할만한 정보를 제공받지 못해 사용자의 만족도가 떨어진다. 이를 해결하기 위해 본 논문에서는 대표 선율을 이용하여 유사한 곡들로 클러스터링을 수행하고 내용 기반 검색 시 질의가 속하는 클러스터를 찾고 해당 클러스터 안에서 거리함수를 통해 질의와 유사한 곡들을 선별한다. 선별된 곡들과 사용자의 프로파일을 통해 음악 취향을 고려할 수 있는 내용 기반음악 필터링 기법을 적용하여 사용자의 만족을 증가시키는 결과를 제공한다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.267-271
/
2007
디지털 카메라의 보급과 U.C.C. 개념의 등장으로 인하여 개인이 생산하는 사진의 양도 많아지고, 이를 감상하는 시간도 많아졌다. 사진이란 추억을 회상하는데 하나의 포인트 역할을 하는 매체이다. 따라서 인간의 감성적인 부분을 많이 자극되는데, 이 과정에서 추가적인 자극을 줌으로써 사용자의 감성을 더욱 자극할 수 있다. 하지만, 기존의 연구들은 디지털 사진을 검색하고 관리하는데 초점이 맞추어져 있었다. 본 논문에서는 사용자가 사진 앨범을 감상할 때에 개별 사진을 분석하여 전체 사진과 가장 잘 어울리는 배경음악을 추천/재생하는 ListenPhoto 시스템을 제안한다. 그리고, 시스템의 필요성에 대한 평가와 시스템 성능에 대한 평가 두 부분으로 나누어 평가를 진행하였다. 사용자들은 이 시스템을 통하여 풍부하게 디지털 사진 생활을 즐길 수 있게 될 것이다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.289-291
/
2000
인터넷의 발달로 인해 사용자들은 이제는 인터넷에서 필요한 정보를 습득할 수 있을 뿐만 아니라, 생활에 필요한 여러 가지 활동들을 할 수 있게 되었다. 그 중에서 많은 관심을 갖는 것은 구매 활동이다. 따라서 수많은 기업들이 사람들의 구매 활동에 대응하여 전자상거래에 투자를 하고 있고, 현재는 Amazon.com과 같은 세계적인 사이트도 나타나기 시작하고 있다. 또한, 전자상거래 사이트들은 사용자들의 구매 활동을 도와주기 위해 추천 시스템의 도입을 추진하고 있다. 추천 시스템은 사용자들로부터 얻어진 정보를 학습하여 이용 가능한 상품 중에서 고객이 좋아할 만한 것은 추천해주는 시스템이다. 본 논문에서는 명백하게 사용자에게 정보를 요구하는 방법 대신에 묵시적인 정보 즉, 구매 활동에서 발생하는 정보를 이용한 음악 추천 시스템을 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.351-352
/
2023
본 논문은 과거 한국 가요(K 팝)의 가사를 수집하여 (1) 특정 키워드와 관련된 기존 가사를 검색하거나, (2) 작사가가 작성한 새로운 가사와 유사한 기존 가사를 검색하거나, (3) 특정 키워드와 관련된 가사 속 어휘를 제안하는 작사 지원 시스템을 제안한다. 지금까지의 음악 관련 시스템은 음악을 소비하는 사람들을 위한 음악 추천 시스템에 집중해 왔으나, 이 연구에서는 음악을 생산하는 작사가에게 초점을 맞춰 이들을 돕는 작사 지원 시스템을 제안하고자 한다. 제안 시스템은 TF-IDF 와 word2vec 을 활용하여 가사와 단어 벡터 공간에 가사와 어휘를 배치하고 코사인 유사도를 계산한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.471-474
/
2022
음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.
The recent growth of a digital music market induces increasing demands for music searching and recommendation services. In order to improve the performance of music-based application services, the process of extracting melodies from polyphonic music is essential. In this paper, we propose a method to extract melodies from piano solo music which is highly polyphonic and has a wide pitch range. We categorize piano music into three classes taking into account the characteristics of music, and extract melodies according to each class. The performance evaluation for the implemented system showed that our method works successfully on a variety of piano solo music.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.3
/
pp.215-222
/
2021
As the importance of human-computer interaction (Human Computer Interface) technology grows and research on HCI is progressing, it is inferred about the research emotion inference or the computer reaction according to the user's intention, not the computer reaction by the standard input of the user. Stress is an unavoidable result of modern human civilization, and it is a complex phenomenon, and depending on whether or not there is control, human activity ability can be seriously changed. In this paper, we propose an intelligent emotional recommendation system using music as a way to relieve stress after measuring heart rate variability (HRV) and acceleration photoplethymogram (APG) increased through stress as part of human-computer interaction. The differential evolution algorithm was used to extract reliable data by acquiring and recognizing the user's biometric information, that is, the stress index, and emotional inference was made through the semantic web based on the obtained stress index step by step. In addition, by searching and recommending a music list that matches the stress index and changes in emotion, an emotional recommendation system suitable for the user's biometric information was implemented as an application.
Choi, Yoon-Jae;Lee, Ho-Dong;Lee, Ho-Joon;Park, Jong C.
한국HCI학회:학술대회논문집
/
2009.02a
/
pp.725-732
/
2009
Thanks to the development of the Internet, people can easily access a vast amount of music. This brings attention to application systems such as a melody-based music search service or music recommendation service. Extracting melodies from music is a crucial process to provide such services. This paper introduces a novel algorithm that can extract melodies from piano music. Since piano can produce polyphonic music, we expect that by studying melody extraction from piano music, we can help extract melodies from general polyphonic music.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.