• 제목/요약/키워드: 음소 오류

검색결과 61건 처리시간 0.022초

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정 (Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.137-142
    • /
    • 2013
  • 음성 인식 시스템은 부정확한 음성 신호의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율과 신뢰도 측정을 이용한 음성 인식 오류 보정 방법을 제안하였다. 음소 유사율은 학습 모델의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였으며 신뢰도로 측정하였다. 음소 유사율과 신뢰도를 측정하여 오인식되는 오류를 최소화하였으며 음성 인식 과정에서 오류로 판명된 음성에 대하여 오류 보정을 수행하였다. 본 논문에서 제안한 시스템을 적용한 결과 98.3%의 인식률과 95.5%의 오류 보정율을 나타내었다.

음성인식 후처리에서 음소 유사율을 이용한 오류보정에 관한 연구 (A Study on Error Correction Using Phoneme Similarity in Post-Processing of Speech Recognition)

  • 한동조;최기호
    • 한국ITS학회 논문지
    • /
    • 제6권3호
    • /
    • pp.77-86
    • /
    • 2007
  • 최근 텔레매틱스 단말기 등과 같이 음성인식을 인터페이스로 하는 음성기반 검색시스템들이 많이 개발되고 있다. 그러나 음성인식에는 여전히 많은 오류가 존재하며, 이에 오류보정에 대한 여러 가지 연구가 진행되고 있다. 본 논문에서는 한국어의 음소가 갖는 특징을 기반으로 음성인식 후처리에서의 오류보정을 제안하였다. 이를 위해 한국어 음소의 특징을 고려한 음소 유사율을 사용하였다. 음소 유사율은 훈련데이터를 모노폰으로 훈련시켜 한국어 음소 각각에 대하여 MFCC와 LPC 특징추출방법을 사용하여 특징추출을 수행하고, 바타차랴 거리 측정법을 사용하여 각 음소 사이의 유사율을 구하였다. 음소 유사율과 신뢰도를 이용하여 오류보정률을 구하였으며, 이를 사용하여 음성인식 과정에서 오류로 판명된 어절에 대하여 오류보정을 수행하고, 음절 복원과 형태소 분석을 재수행하는 과정을 거쳤다. 실험 결과 MFCC와 LPC 각각 7.5%와 5.3%의 인식 향상률을 보였다.

  • PDF

합성용 운율 DB 구축에서의 MLP 기반 후처리가 포함된 음소분할 (The phoneme segmentatioi with MLP-based postprocessor on speech synthesis corpora)

  • 박은영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.344-349
    • /
    • 1998
  • 음성/언어학적 및 음성의 과학적 연구를 위해서는 대량의 음소 단위 분절 레이블링된 데이터베이스 구축이 필수적이다. 따라서, 본 논문은 음성 합성용 DB 의 구축 및 합성 단위 자동 생성 연구의 일환으로 자동 음소 분할기의 경계오류를 보상할 목적으로 MLP 기반 호처리기가 포함된 음소 분할 방식을 제안한다. 최근 자동 음소 분할기의 성능 향상으로 자동 분절 결과를 이용하여 음성 합성용 운율 DB를 작성하고 있으나, 여전히 경계오류를 수정하지 않고서는 합성 단위로 직접 사용하기 어렵다. 이로 인해 보다 개선된 자동 분절 기술이 요구된다. 따라서, 본 논문에서는 음성에 내제된 음향적 특징을 다층 신경회로망으로 학습하고, 자동 분절기 오류의 통계 특성을 이용하여 자동 분절 경계 수정에 용이한 방식을 제안한다. 고립단어로 발성된 합성 데이터베이스에서, 제안된 후처리기를 도입 후, 기존 자동 분절 시스템이 분할율에 비해 약 25% 의 향상된 성능을 보였으며, 절대 오류는 약 39%가 향상되었다.

  • PDF

미등록어 거절 알고리즘에서 음소 특성 추출의 신뢰도 측정 개선 (Reliability measure improvement of Phoneme character extract In Out-of-Vocabulary Rejection Algorithm)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.219-224
    • /
    • 2012
  • 통신 모바일 단말기에서 어휘 인식 시스템은 부정확한 어휘로부터 음소 특징을 추출하기 때문에 음소를 인식하지 못하거나 유사한 음소 오인식 오류로 인한 낮은 인식률의 문제점을 가진다. 이러한 문제를 해결하기 위해서, 본 논문에서는 입력 음소는 음소 유사율 처리를 통해 음소 사이의 거리를 측정하여 수치로 나타내고, 신뢰도 측정을 통하여 인식되어진 결과를 확인하는 시스템을 제안하였다. 이로 인해 부정확한 어휘 제공으로 인한 오인식 오류를 최소화하였으며 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였다. 기존 방법인 에러 패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템의 성능 평가 결과 2.7%의 인식 향상율을 보였다.

바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템 (Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2010
  • 어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.

합성단위 자동생성을 위한 자동 음소 분할기 후처리에 대한 연구 (The Postprocessor of Automatic Segmentation for Synthesis Unit Generation)

  • 박은영;김상훈;정재호
    • 한국음향학회지
    • /
    • 제17권7호
    • /
    • pp.50-56
    • /
    • 1998
  • 본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.

  • PDF

기능어용 음소 모델을 적용한 한국어 연속음성 인식 (Korean Continuous Speech Recognition using Phone Models for Function words)

  • 명주현;정민화
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.354-356
    • /
    • 2000
  • 의사형태소를 디코딩 단위로 한국어 연속 음성 인식에서의 조사, 어미, 접사 및 짧은 용언의 어간등의 단어가 상당수의 인식 오류를 발생시킨다. 이러한 단어들은 발화 지속시간이 매우 짧고 생략이 빈번하며 결합되는 다른 형태소의 형태에 따라서 매우 심한 발음상의 변이를 보인다. 본 논문에서는 이러한 단어들은 한국어 기능어라 정의하고 실제 의사형태소 단위의 인식 실험을 통하여 기능어 집합 1, 2를 규정하였다. 그리고 한국어 기능어에 기능어용 음소를 독립적으로 적용하는 방법을 제안했다. 또한 기능어용 음소가 분리되어 생기는 음향학적 변이들을 처리하기 위해 Gaussian Mixture 수를 증가시켜 보다 견고한 학습을 수행했고, 기능어들의 음향 모델 스코어가 높아짐에 따른 인식에서의 삽입 오류 증가를 낮추기 위해 언어 모델에 fixed penalty를 부여하였다. 기능어 집합1에 대한 음소 모델을 적용한 경우 전체 문장 인식률은 0.8% 향상되었고 기능어 집합2에 대한 기능어 음소 모델을 적용하였을 때 전체 문장 인식률은 1.4% 증가하였다. 위의 실험 결과를 통하여 한국어 기능어에 대해 새로운 음소를 적용하여 독립적으로 학습하여 인식을 수행하는 것이 효과적임을 확인하였다.

  • PDF

의미 분석과 형태소 분석을 이용한 핵심어 인식 시스템 (Key-word Recognition System using Signification Analysis and Morphological Analysis)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권11호
    • /
    • pp.1586-1593
    • /
    • 2010
  • 확률적 패턴 매칭과 동적 패턴 매칭의 어휘 인식 오류 보정 방법에서는 핵심어를 기반으로 문장을 의미론적으로 분석하므로 형태론적 변형에 따른 핵심어 분석이 어려운 문제점을 가지고 있다. 이를 해결하기 위해 본 연구에서는 음절 복원 알고리즘에서 형태소 분석을 이용하여 인식된 음소 열을 의미 분석 과정을 통해 음소의 의미를 파악하고 형태론적 분석으로 문장을 복원하여 어휘 오인식률을 감소하였다. 시스템 분석을 위해 음소 유사률과 신뢰도를 이용하여 오류 보정률을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 2.0%의 인식 향상률을 보였다.

운율구 추출 및 음소 지속 시간의 트리 기반 모델링 (Tree-based Modeling of Prosodic Phrasing and Segmental Duration)

  • 이상호;오영환
    • 한국음향학회지
    • /
    • 제17권6호
    • /
    • pp.43-53
    • /
    • 1998
  • 본 논문에서는 한국어 TTS시스템을 위한 운율구 추출, 운율구 사이의 휴지 기간, 음소의 지속 시간 모델링 방법을 설명한다. 실험을 위해 여러 장르로 구성된 400문장을 선 정하고, 이를 전문 여성 아나운서가 발성하였다. 녹음된 음성 신호에 대해 음소 및 운율구 경계를 결정하고, 문장에 대해서는 형태소 분석, 발음표기 변환, 구문 분석을 수행하였다. 400문장(약33분) 중 240문장(약20분)을 이용하여 결정 트리 및 회귀 트리를 학습시킨 후, 160분장(약13분)에 대해 실험하였다. 운율 모델링을 위한 특징들이 제안되었고, 학습된 트리 들을 해석함으로써 특징들의 유효성이 평가되었다. 실험 문장에 대해 운율구 경계의 유무를 결정하는 결정 트리의 오류율은 14.46%이었고, 운율구 사이의 휴지 기간과 음소 지속 시간 을 예측하기 위한 회귀 트리들의 평균 제곱 오류근(RMSE)이 각각 132msec, 22msec이었다. 수집된 모든 자료(400문장)로 학습한 결과, 운율구 경계 결정 오류율, 휴지 기간 및 지속시 간 RMSE의 10-fold cross-validation 추정치가 각각 13.77%, 127.91msec, 21.54msec이었다.

  • PDF