• 제목/요약/키워드: 음소 모델링

검색결과 49건 처리시간 0.035초

연속분포 HMM을 이용한 한국어 연속 음성 인식 시스템 개발 (On the Development of a Continuous Speech Recognition System using Continuous Hidden Markov Model for Korean Language)

  • 김도영;박용규;권오욱;은종관
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.101-110
    • /
    • 1993
  • 본 논문에서는 연속분포 hidden Markov 모델을 이용한 화자독립 연속 음성 인식 시스템에 관해 기술한다. 연속분포 모델은 평균과 분산 벡터로 구성되며 음성신호를 직접 모델링하여 양자화 왜곡이 없어진다. 특징벡터는 filter bank 계수 및 그 1, 2차 미분계수를 사용하여 음성신호의 동적 특성을 반영하였다. Segmental K-means 알고리즘을 이용하여 학습하였으며, 연속어 인식에서 가장 문제가 되는 조음화 현상으로 인한 인식률 저하를 막기 위해 앞뒤의 음소를 고려해 주는 triphone을 인식단위로 사용하였다. Search 알고리즘으로는 시간 면에서 효율이 좋은 one-pass search 알고리즘을 사용하였다. 성능 평가를 위한 화자 독립 인식 실험에서 문법이 없을 경우 83%, finite state network율 적용한 경우에는 94%의 인식률을 나타내었다.

  • PDF

Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구 (A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.30-39
    • /
    • 2003
  • 본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.

  • PDF

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

PC용 Text-to-Speech 시스템 개발 (Development of Text-to-Speech System for PC)

  • 최무열;황철규;김순태;김정곤;이서배;장석복;표경란;안혜선;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.41-44
    • /
    • 1999
  • 본 논문에서는 PC 응용을 위한 고음질의 한국어 text-to-speech(TTS) 합성 시스템을 개발하였다. 개발된 시스템의 합성방식으로는 음의 고저 조절, 인접음 사이의 연결 처리 및 음색제어 등에서 기존의 PSOLA 방식에 비해 장점을 가지는 정현파 모델 기반의 방식을 채택하였고, 자연스러운 운율 모델링을 위하여 통계적 기법중의 하나인 Classification and regression tree(CART) 방법을 사용하였다. 또한 음소 경계의 불연속성 문제를 줄이기 위한 합성단위로 초성-중성 및 종성 단위를 사용하였고, 다양한 음색표현이 가능하도록 음색제어 기능을 갖추었다. 그리고, 표준 Speech Application Program Interface(SAPI)를 준용한 TTS engine 형태로 구현함으로써 PC 상에서의 응용 프로그램 개발 편의성을 높였다. 합성음의 청취평가 결과 음질의 우수성 및 음색제어 기능의 유효성을 확인할 수 있었다.

  • PDF

가변 어휘 음성 인식기의 음향모델 개선 및 성능분석 (Acoustic Model Improvement and Performance Evaluation of the Variable Vocabulary Speech Recognition System)

  • 이승훈;김회린
    • 한국음향학회지
    • /
    • 제18권8호
    • /
    • pp.3-8
    • /
    • 1999
  • 문맥독립형 음향모델을 채택하고 있는 기존의 가변어휘 음성인식기는 주변환경에 따른 음소의 변화를 모델링 할 수 없었다. 이러한 문제를 해결하기 위해서는 변이음을 이용한 문맥의존형 음향모델을 사용해야 한다. 본 논문은 가변어휘 음성인식기의 음향모델을 효과적으로 개선하기 위하여 적용한 방법에 대해서 기술하고 있다. 즉, 음향모델의 개선은 엔트로피를 이용한 군집화 기법을 적용하여 변이음의 개수를 변경시키면서 최적의 변이음 모델을 추출하는 방법을 사용하였다. 개선된 모델에 대한 성능은 POW(Phonetically Optimized Words) 3848 DB 및 SNR이 크게 다른 2종류의 PC168 DB를 이용하여 훈련 및 인식 실험을 수행하면서 평가하였다. 결론적으로 변이음의 개수를 낮추면서도 인식 성능의 저하를 가져오지 않는 최적의 변이음 모델을 얻을 수 있었으며 PC168 DB를 이용한 인식실험을 통하여 확인할 수 있었다.

  • PDF

사용자 인터페이스 에이젼트 환경을 위한 국어 발음 애니메이션 (Korean Talking Animation for User Interface Agent Environment)

  • 최승걸;이미승;김웅순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.284-297
    • /
    • 1996
  • 사용자가 컴퓨터와 자연스럽고 인간적으로 대화할 수 있고, 사람의 요구에 지능적인 해답을 능동적으로 제시할 수 있는 사용자 인터페이스 에이전트가 활발히 연구되고 있다. 음성, 펜, 제스쳐인식 등을 비롯한 다양한 방법을 통하여 사람의 의사전달방식을 컴퓨터의 입력수단으로 구현하여 사용자 편의성을 도모하고 있다. 본 논문에서는 컴퓨터를 블랙박스로 하고, 표면적으로 지능형 3차원 그래픽 얼굴 에이전트와 사용자가 의사소통을 하는 사용자 인터페이스를 대상으로 하였다. 컴퓨터가 단순문제 해결을 위한 도구에서 많은 정보를 다양한 매체를 통해 제공하는 보조자의 역할을 수행하게 되었기 때문에 위의 방법은 보다 적극적인 방법이라 할 수 있다. 이를 위한 기반 기술로써 국어를 발음하는 얼굴 애니메이션을 연구하였다. 발음을 표현하기 위한 데이터로써 디지털 카메라를 사용하여 입술 운동의 특징점의 위치를 조사하였고, 모델링 시스템을 개발하여 데이터를 입력하였다. 적은 데이터로도 복잡한 자유곡면을 표현할 수 있는 B-Spline곡면을 기본데이터로 사용하였기 때문에 애니메이션을 위한 데이터의 양 또한 줄일 수 있었다. 그리고 국어음소의 발음시간 수열에 대한 입술모양의 변화를 조사하여 발음소리와 입술 움직임을 동기화 시킨 발음 애니메이션을 구현하였다.

  • PDF

화자독립 음성인식을 위한 GMM 기반 화자 정규화 (Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition)

  • 신옥근
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.437-442
    • /
    • 2005
  • 화자독립 음성인식기의 화자 정규화를 위해 GMM(Gaussian mixture model)분포를 이용하는 방법에 대해 실험한다. 이 방법은 벡터 양자화기를 이용한 선행 연구를 개선한 것으로, 정규화된 학습용 특징벡터들의 확률분포를 최적의 클러스터의 수를 갖는 GMM분포로 모델링한 다음, 이 분포를 이용하여 시험용화자의 워핑계수를 추정한다. 이 연구의 목적은 기존의 ML을 이용한 방법의 단점을 개선하는 동시에 벡터 양자화기를 이용한 선행연구와'soft decision'이라 불리는 확률 분포를 이용한 방법의 성능을 비교하는데 있다. TIMIT 코퍼스를 대상으로 한 음소 인식 실험에서 클러스터의 수를 적절한 크기로 설정한 GMM분포를 이용함으로써 벡터 양자화기를 이용한 방법에 비해 약간 나은 인식률을 얻을 수 있었다.

연속분포 HMM을 이용한 한국어 연속 음성 인식 시스템 개발 (On the Development of a Continuous Speech Recognition System Using Continuous Hidden Markov Model for Korean Language)

  • 김도영;박용규;권오욱;은종관;박성현
    • 한국음향학회지
    • /
    • 제13권1호
    • /
    • pp.24-31
    • /
    • 1994
  • 본 논문에서는 연속분포 hidden Markov모델을 이용한 화자독립 연속 음성 인식 시스템에 관해 기술한다. 연속분포 모델은 평균과 분산 벡터로 구성되며 음성신호를 직접 모델링하여 양자화 왜곡이 없어진다. 특징벡터는 filter bank 계수 및 그 1, 2차 미분계수를 사용하여 음성신호의 동적 특성을 반영하였다. Segmental K-means 알고리즘을 이용하여 학습하였으며, 연속어 인식에서 가장 문제가 되는 조음화 현상으로 인한 인식률 저하를 막기 위해 앞뒤의 음소를 고려해주는 triphone을 인식단위로 사용하였다. Search 알고리즘으로는 시간 면에서 효율이 좋은 one-pass search 알고리즘을 사용하였다 성능 평가를 위한 회자 독립인식 실험에서 문법이 없을 경우 $83\%$, finite state network을 적용한 경우에는 $94\%$의 인식률을 나타내었다.

  • PDF

한국어 연속음성 인식을 위한 발음열 자동 생성 (Automatic Generation of Pronunciation Variants for Korean Continuous Speech Recognition)

  • 이경님;전재훈;정민화
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.35-43
    • /
    • 2001
  • 음성 인식이나 음성 합성시 필요한 발음열을 수작업으로 작성할 경우 작성자의 음운변화 현상에 대한 전문적 언어지식을 비롯하여 많은 시간과 노력이 요구되며 일관성을 유지하기도 쉽지 않다. 또한 한국어의 음운 변화 현상은 단일 형태소의 내부와 복합어에서 결합된 형태소의 경계점, 여러 형태소가 결합해서 한 어절을 이룰 경우 그 어절 내부의 형태소의 경계점, 여러 어절이 한 어절을 이룰 때 구성 어절의 경계점에서 서로 다른 적용 양상을 보인다. 본 논문에서는 이러한 문제를 해결하기 위해서 형태음운론적 분석에 기반하여 문자열을 자동으로 발음열로 변환하는 발음 생성 시스템을 제안하였다. 이 시스템은 한국어에서 빈번하게 발생하는 음운변화 현상의 분석을 통해 정의된 음소 변동 규칙과 변이음 규칙을 다단계로 적용하여 가능한 모든 발음열을 생성한다. 각 음운변화 규칙을 포함하는 대표적인 언절 리스트를 이용하여 구성된 시스템의 안정성을 검증하였고, 발음사전 구성과 학습용 발음열의 유용성을 인식 실험을 통해 평가하였다. 그 결과 표제어 사이의 음운변화 현상을 반영한 발음사전의 경우 5-6% 정도 나은 단어 인식률을 얻었으며, 생성된 발음열을 학습에 사용한 경우에서도 향상된 결과를 얻을 수 있었다.

  • PDF