Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.05a
/
pp.164-167
/
2012
The technology which is used for segregating voices signals from exhaust noise signals of a car is very practical one to realize the interfaces between men and machines using voices. The voice signals contaminated by exhaust noise signal of a car was separated by canonical correlation ananysis(CCA) in an environment which does not guarantee the independence between signals and have prior informations. Rearrangement for the input signals is important in CCA. CCA was studied and segragation between source signals were performed by CCA through rearrangements of each of signals. It is possible to apply the technique to various signals since it is also possible to use CCA to the signals which are not independent.
In this paper, we propose a new speech separation algorithm to extract and enhance the target speech signals from mixed speech signals by utilizing both magnitude and phase information. Since the previous statistical modeling algorithms assume that the log power spectrum values of the mixed speech signals are independent in the temporal and frequency domain, discontinuities occur in the resultant separated speech signals. To reduce the discontinuities, we apply a smoothing filter in the time-frequency domain. To further improve speech separation performance, we propose a statistical model based on both magnitude and phase information of speech signals. Experimental results show that the proposed algorithm improve signal-to-interference ratio (SIR) by 1.5 dB compared with the previous magnitude-only algorithms.
Kim, Bokyoung;Yang, Youngjun;Hwang, Yonghae;Kim, Kyuheon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.851-853
/
2022
인공지능을 활용한 다양한 딥러닝 기술의 보급과 상용화로 오디오 음성 인식 분야에서도 음성 인식의 정확도를 높이기 위한 다양한 연구가 진행되고 있다. 최근 STT 를 위한 음성 인식 엔진은 딥러닝 기술을 기반으로 과거에 비해 높은 정확도를 보이고 있다. 하지만 예능 프로그램, 드라마, 스포츠 방송 등과 같이 비음성 신호와 음성 신호가 함께 녹음되는 오디오의 경우 음성 인식 정확도가 크게 낮아지는 문제가 발생한다. 이에 본 연구에서는 다양한 장르의 오디오를 음성과 음악을 분리하는 딥러닝 모델을 활용하여 음성 신호와 비음성 신호로 분리하는 방법을 제시하고, STT 결과를 분석하여 음성 인식의 정확도를 높이기 위한 연구 방향을 제시한다.
In this paper, we performed a class of experiments on segmenting consonant and vowel from Korean consonant-vowel (CV) monosyllable data, using the fractal dimension of the speech signals. We chose the Minkowski-Bouligand dimension as the fractal dimension, and computed it using the morphological covering method. In order to examine the usefulness of the fractal dimension in speech segmentation we carried out speech segmentation experiments using the fractal dimension alone, using the short-time energy alone, and using both the fractal dimension and the short-time energy, and compared the results. From the experiments, segmentation accuracy of $96.1\%$ was achieved for the case with using the multiplication of the slope of the fractal dimension and that of the energy, while the segmentation accuracies for the cases with using the slope of either the fractal dimension or energy alone were slightly lower $(93.6\%)$ or much lower $(88.0\%)$ than the above case, respectively. These results indicate that the fractal dimension can be used as a good parameter for speech segmentation.
There is no general method to find out from signals of the channel outputs of ICA(Independent Component Analysis) which is what you want. Assuming speech signals contaminated with the sound from the muffler of a car, this paper presents the method which shows what you want, It is anticipated that speech signals will show larger correlation coefficients for speech signals than others. Batch, maximum and average method were proposed using 'ah', 'oh', 'woo' vowels whose signals were spoken by the same person who spoke the speech signals and using the same vowels whose signals are by another person. With the correlation coefficients which were calculated for each vowel, voting and summation methods were added. This paper shows what the best is among several methods tried.
본 논문은 주파수 전이신호와 시간 전이 신호에 대해서 고조파 잡음 여기 방법과 시간 분리 여기 방법을 적용한 2.4kbps 음성부호화 방법을 제안한다. 혼합 여기 부호화 방법은 주기 신호와 비 주기 신호를 효과적으로 표현하기 위해 하모닉 잡음 모델을 사용한다. 혼합신호에 대한 잡음 성분은 캡스트럴 분석 방법을 사용함으로써 추출되고, AR(Autoregressive Model) 모델에 의해 표현된다. 시간 전이구간 신호에서의 모호한 음성을 효과적으로 제거하기 위한 또 다른 방법이 제안된다. 제안된 시간 분리 방법은 시간 에너지 변화정도를 관찰함으로써 전이 시점을 감지하고 다른 시간 길이를 가지는 두 블록으로 분리하여 분석한다. 시간 분리 방법은 분석을 위한 비대칭 윈도우와 합성에서의 위상 합성 방법을 포함한다. 제안된 방법을 사용한 2.4kbps 음성부호화 방법은 주관적 음질 평가에서 전이구간에서의 지각적 음질의 향상을 보여주었으며, 원본 음성 스펙트럼과의 고조파 비 매칭에 의한 윙윙거리는 기계적인 잡음을 감소시킨다.
본 논문은 주파수 전이신호와 시간 전이 신호에 대해서 고조파 잡음 여기 방법과 시간 분리 여기 방법을 적용한 2.4 kbps 음성부호화 방법을 제안한다. 혼합 여기 부호화 방법은 주기 신호와 비 주기 신호를 효과적으로 표현하기 위해 하모닉 잡음 모델을 사용한다. 혼합신호에 대한 잡음 성분은 캡스트럴 분석 방법을 사용함으로써 추출되고, AR (Autoregressive Model) 모델에 의해 표현된다. 시간 전이구간 신호에서의 모호한 음성을 효과적으로 제거하기 위한 또 다른 방법이 제안된다. 제안된 시간 분리 방법은 시간 에너지 변화정도를 관찰함으로써 전이 시점을 감지하고 다른 시간 길이를 가지는 두 블록으로 분리하여 분석한다. 시간 분리 방법은 분석을 위한 비대칭 윈도우와 합성에서의 위상 합성 방법을 포함한다. 제안된 방법을 사용한 2.4 kbps 음성부호화 방법은 주관적 음질 평가에서 전이구간에서의 지각적 음질의 향상을 보여주었으며, 원본 음성 스펙트럼과의 고조파 비 매칭에 의한 윙윙거리는 기계적인 잡음을 감소시킨다.
The sounds of exhaust emissions of automobiles are independent sound sources which are nothing to do with voices. We have no information for the sources of voices and exhaust sounds. Accordingly, Independent Component Analysis which is one of the Blind Source Separaton methods was used to segregate two source signals from each mixed signals. Maximum Likelyhood Estimation was applied to the signals came through the stereo microphone to segregate the two source signals toward the maximization of independence. Since there is no clue to find whether it is speech signal or not, the coefficients of the slope was calculated by the autocovariances of the signals in frequcency domain. Noise remover for speech signals was implemented by coupling the two algorithms.
Noisy speech recognition is one of most important problems in speech recognition. In this paper, a method which efficiently removes the mixed noise with speech, is proposed. The proposed method is based on the ICA to separate the mixed noise. ICA(Independent component analysis) is a signal processing technique, whose goal is to express a set of random variables as linear combinations of components that are statistically as independent from each other as possible.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.103-106
/
2002
본 논문에서는 입력음성신호로부터 음소간의 경계를 찾는 문제를 풀기위해 재귀적인 방식으로 EM 알고리즘을 적용한다. 즉, 예상되는 두 끝점 사이의 부분을 현재의 프레임 n 이라고 하면, 그 전 프레임 n-1 에서 구해진 끝점이 주는 정보와 그 끝점으로부터 이어지는 음성샘플로부터 현재 프레임의 끝점을 구한다. 또한 현재의 프레임 n 에서 끝점을 추정해 내면, 그 추정한 끝점과 그 점 이후에 이어지는 음성샘플값으로부터 다음 프레임 n+1 의 끝점을 구한다. 이러한 방식을 재귀적인 음소분리 방식이라고 한다. 그리고, 각 프레임에서 끝점을 구하기 위해서는 끝점의 좌표를 추정해야 할 파라메터로 하고, 그 주변의 음성샘플 값을 관찰 값으로 하여 EM(Expectation and Maximization) 알고리즘을 이용한다. 이 EM 알고리즘을 이용한 재귀적인 음소분리 방식을 실제 음성 DB 로부터 음소쌍을 추출하여 테스트 했을 때 약 5 회의 EM 반복 후에 경계간으로 수렴함을 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.