The Journal of Korean Institute of Communications and Information Sciences
/
v.11
no.3
/
pp.179-196
/
1986
In this paper, the peformance of a statistical packet voice/data multiplexer is studied. In ths study we assume that in the packet voice/data multiplexer two separate finite queues are used for voice and data traffics, and that voice traffic gets priority over data. For the performance analysis we divide the output link of the multiplexer into a sequence of time slots. The voice signal is modeled as an (M+1) - state Markov process, M being the packet generation period in slots. As for the data traffic, it is modeled by a simple Poisson process. In our discrete time domain analysis, the queueing behavior of voice traffic is little affected by the data traffic since voice signal has priority over data. Therefore, we first analyze the queueing behavior of voice traffic, and then using the result, we study the queueing behavior of data traffic. For the packet voice multiplexer, both inpur state and voice buffer occupancy are formulated by a two-dimensional Markov chain. For the integrated voice/data multiplexer we use a three-dimensional Markov chain that represents the input voice state and the buffer occupancies of voice and data. With these models, the numerical results for the performance have been obtained by the Gauss-Seidel iteration method. The analytical results have been verified by computer simylation. From the results we have found that there exist tradeoffs among the number of voice users, output link capacity, voic queue size and overflow probability for the voice traffic, and also exist tradeoffs among traffic load, data queue size and oveflow probability for the data traffic. Also, there exists a tradeoff between the performance of voice and data traffics for given inpur traffics and link capacity. In addition, it has been found that the average queueing delay of data traffic is longer than the maximum buffer size, when the gain of time assignment speech interpolation(TASI) is more than two and the number of voice users is small.
고속 인터넷 망 구축과 멀티미디어 통신 수요의 증가에 따라 VoIP는 기존의 PSTN 망의 대체 혹은 확장 기술로서 지속적으로 검증되어 왔다. 음성 데이터 처리 규약들 중 SIP는 다른 규약에 비해 신호 처리 단계가 간단하기 때문에 이를 기반으로 RTP를 활용하여 음성 통신 시스템을 구축하는 사례가 늘어나고 있다. 그러나 RTP의 특성상 패킷을 처리할 때마다 복원 과정이 필요하며, 다중 세션으로 통신이 발생할 경우 전체 패킷들의 관리가 복잡해지므로 이들 간에 혼선 없이 데이터를 처리 및 유지할 수 있는 방법론이 요구된다. 본 논문에서는 SIP 기반의 IP 전화를 통해서 고객과 상담원 간의 통화 이벤트가 발생하는 일반 콜센터 환경에서 RTP 음성 데이터를 처리하는 다중 세션 어플리케이션의 구축 사례를 제시한다. 구현한 시스템은 IP 전화에서 발생하는 통화 내역을 통합 스위치 서버에서 포트 미러링하여 녹취 및 녹음 서버로 전송하며, 전송된 패킷 정보들의 세션이 유지되고 있는 동안 음성 데이터를 실시간으로 모니터링한다.
Since speech impairment is prevalent in patients with Parkinson's disease (PD), speech recognition systems suitable for these patients are needed. In this paper, we propose a speech recognition system that effectively recognizes the speech of patients with PD. The speech recognition system is firstly pre-trained with the Globalformer using the speech data from healthy people, and then fine-tuned using relatively small amount of speech data from the patient with PD. For this analysis, we used the speech dataset of healthy people built by AI hub and that of patients with PD collected at Inha University Hospital. As a result of the experiment, the proposed speech recognition system recognized the speech of patients with PD with Character Error Rate (CER) of 22.15 %, which was a better result compared to other methods.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.11b
/
pp.141-145
/
1999
뉴스나 드라마, 영화 등의 비디오에 대한 검색 시 일반 사용자의 요구에 가장 잘 부합되는 결과를 얻기 위해 비디오 데이터의 의미적 분석과 색인을 만드는 것이 필요하다. 일반적으로 음성신호가 비디오 데이터의 내용을 잘 나타내고 비디오와 동기가 이루어져 있으므로, 내용기반 검색을 위한 비디오 데이터 분할에 효율적으로 이용될 수 있다 본 논문에서는 캡션 정보가 주어지는 방송뉴스 프로그램을 대상으로 효율적인 검색, 색인을 위한 비디오 데이터의 분할에 음성인식기술을 적용하는 방법을 제안하고 그에 따른 실험결과를 제시한다.
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.767-770
/
2005
네트워크상에서 전달되는 음성데이터는 전달되는 과정에서 잡음 등의 외부 요인으로 인하여 데이터에 손실이 생기는 문제가 발생한다. 이렇게 전달된 음성데이터가 음성 인식기를 통과하면 바로 음성 인식기를 통과했을 때 보다 인식률이 낮아진다. 본 연구에서는 홈 네트워크를 제어하는데 있어서 음성 인식률을 향상시키기 위해서 음성 데이터를 입력받아, 이를 음소단위 기반의 유사율 알고리즘을 적용시켜 이미 구축된 홈 네트워크 용어 관련 사전에 등록된 단어와의 유사성을 검토하여 추출된 결과로 홈 네트워크를 제어하는 방안을 제안한다. 음소단위 기반의 유사율 알고리즘과 다중발화를 이용했을 때 Threshold 값이 85% 일 경우 사전에 구축된 단어와 매칭된 인식률은 100%였으며, 사전에 없는 단어의 오인식률은 2%로 감소되었다.
Although the fields in which is utilized children's speech recognition is on the rise, the lack of quality data is an obstacle to improving children's speech recognition performance. This paper proposes a new method for improving children's speech recognition performance by additionally using adult speech data. The proposed method is a transformer based domain adversarial training using dynamically weighted loss to effectively address the data imbalance gap between age that grows as the amount of adult training data increases. Specifically, the degree of class imbalance in the mini-batch during training was quantified, and the loss function was defined and used so that the smaller the data, the greater the weight. Experiments validate the utility of proposed domain adversarial training following asymmetry between adults and children training data. Experiments show that the proposed method has higher children's speech recognition performance than traditional domain adversarial training method under all conditions in which asymmetry between age occurs in the training data.
Park, Chanjun;Seo, Jaehyung;Lee, Seolhwa;Moon, Heonseok;Eo, Sugyeong;Jang, Yoonna;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.178-185
/
2021
Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다.
Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.41-49
/
2024
Speech recognition technology is continuously advancing and widely used in various fields. In this study, we aimed to investigate the impact of speech data quality on speech recognition models by dividing the dataset into the entire dataset and the top 70% based on Signal-to-Noise Ratio (SNR). Utilizing Seamless M4T and Google Cloud Speech-to-Text, we examined the text transformation results for each model and evaluated them using the Levenshtein Distance. Experimental results revealed that Seamless M4T scored 13.6 in models using data with high SNR, which is lower than the score of 16.6 for the entire dataset. However, Google Cloud Speech-to-Text scored 8.3 on the entire dataset, indicating lower performance than data with high SNR. This suggests that using data with high SNR during the training of a new speech recognition model can have an impact, and Levenshtein Distance can serve as a metric for evaluating speech recognition models.
KIPS Transactions on Software and Data Engineering
/
v.4
no.6
/
pp.261-268
/
2015
In spoken chatting systems, users'spoken queries are converted to text queries using automatic speech recognition (ASR) engines. If the top-1 results of the ASR engines are incorrect, these errors are propagated to the spoken chatting systems. To improve the top-1 accuracies of ASR engines, we propose a post-processing model to rearrange the top-n outputs of ASR engines using a ranking support vector machine (RankSVM). On the other hand, a number of chatting sentences are needed to train chatting systems. If new chatting sentences are not frequently added to training data, responses of the chatting systems will be old-fashioned soon. To resolve this problem, we propose a data collection model to automatically select chatting sentences from TV and movie scenarios using a support vector machine (SVM). In the experiments, the post-processing model showed a higher precision of 4.4% and a higher recall rate of 6.4% compared to the baseline model (without post-processing). Then, the data collection model showed the high precision of 98.95% and the recall rate of 57.14%.
Proceedings of the Korean Information Science Society Conference
/
2004.10c
/
pp.439-441
/
2004
효율적인 멀티미디어 검색의 필요성이 증대됨에 따라 내용기반 멀티미디어의 검색에 대한 다양한 기법들이 소개되고 있다. 그 중에서 친숙한 멜로디를 가지고 사용자가 직접 마이크를 통해 생성한 음성 질의에 대한 분석에 대해 다루고자 한다. 음성 질의에 사용되는 음성 데이터를 분석함으로써 검색에 이용하는 것이다. 음성데이터를 분석하기 위한 방법으로 시간영역에서 가장 많이 쓰이는 기법 중의 하나인 자기상관함수를 사용한다. 자기상관 함수를 이용하여 특정구간에서 발생하는 일정한 주기 즉 기본주기를 검출할 수 있다. 자기상관함수에 의해 분석된 결과를 가지고, 음의 높낮이를 구하기 위한 기본주파수 검출 알고리즘과 음의 길이, 음의 세기를 결정하기 위한 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.