Journal of the Korea Society of Computer and Information
/
v.17
no.8
/
pp.91-97
/
2012
This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame, then proposes the reduction algorithm of environmental noise by multi-band filter which removes the background noises at each frame according to detection of the speech and noise sections. The proposed algorithm reduces the background noises using filter bank sub-band domain after extracting the features from the speech data. In this experiment, experimental results of the proposed noise reduction algorithm by the multi-band filter demonstrate using the speech and noise data, at each frame. Based on measuring the spectral distortion, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.105-108
/
1999
TTS(Text-To-Speech) 시스템 합성음성의 자연감을 개선하기 위해 하나의 언어에 대해 존재하는 운율 법칙을 정확히 구현해야 한다. 존재하는 운율 법칙을 추출하기 위해서는 방대한 분량의 언어 자료 구축이 필요하다. 그러나 이 방법은 존재하는 운율 현상이 포함된 언어자료에 대해 완벽한 운율을 파악할 수 없으므로 합성음성의 질을 좋게 할 수 없다. 본 논문은 한국어 음성의 운율을 학습하기 위해 2개의 인공 신경망을 제안한다. 하나의 신경망으로 문장의 각 음소에 대한 피치 변화를 학습시키는 것이며, 다른 하나는 에너지 변화를 학습하도록 하였다. 신경망은 BP 신경망을 이용하며 11개의 음소를 나타내기 위해 11개의 입력과, 중간 음소의 피치와 에너지 변화곡선을 근사하는 다항식 계수를 출력하도록 하였다. 신경망시스템의 학습과 평가에 앞서, 음성학적 균형잡힌 고립단어를 기반으로 의미있는 문장을 구성하였다. 문장을 남자 화자로 하여금 읽게 하고 녹음하여 음성 DB를 구축하였다. 음성 DB에 대해 각 음소의 운율 정보를 수집하여 신경망에 맞는 목표 패턴과 훈련 패턴을 작성하였다. 이 목표 패턴은 회귀분석을 통한 추세선을 이용해 피치와 에너지에 대한 2차 다항식계수로 구성하였다. 본 논문은 목표패턴에 맞는 신경망을 학습시켜 좋은 결과를 얻었다.
In a speech coding system using excitation source of voiced and unvoiced, it would be involved a distortion of speech quality in case coexist with a voiced and an unvoiced consonants in a frame. So, I propose TSIUVC(Transition Segment Including Unvoiced Consonant) searching and extraction method in order to uncoexistent with a voiced and unvoiced consonants in a frame. This paper present a new method of TSIUVC approximate-synthesis by using Least Mean Square and frequency band division. As a result, this method obtain a high quality approximation-synthesis waveforms within TSIUVC by using frequency information of 0.547KHz below and 2.813KHz above. The important thing is that the maximum error signal can be made with low distortion approximation-synthesis waveform within TSIUVC. This method has the capability of being applied to a new speech coding of Voiced/Silence/TSIUVC, speech analysis and speech synthesis.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.2
/
pp.330-338
/
2002
A speech recognition chip that can recognize a small vocabulary as a word-level has been designed. It is composed of EPD(Start and End-point detection) block, LPC block, DTW block and external memory interface block. It is made of 126,938 gates on 4x4mm2 area with a CMOS 0.35um TLM process. The speed of the chip varies from 5MHz to 60MHz because of its specific hardware designed for the purpose. It can compare 100,000 voices as a small vocabulary which has approximately 50∼60 frames at the clock of 5MHz and also up to 1,200,000 voices at the clock of 60MHz.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.208-213
/
2010
Generally, the mal factor for speech recognition is the background noise in speech recognition. The noise is the reason to reduce the speech recognition performance. Owing to the fact, the place to recognize is very important. To improve the recognition performance from the sound having noise, we implemented the noise filtered Wiener filter at the signal process step which adopted the FIR filter. In FIR filter, it deal with the filtered speech signal which is appropriate frequency range of human speech frequency range. Therefore, we make the recognition system distinguish between noise and speech sound from the incoming speech signal.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.7
/
pp.1380-1386
/
2003
Speech recognition performance is degraded by the variation in vocal tract length among speakers. In this paper, we have used a vocal tract length normalization method wherein the frequency axis of the short-time spectrum associated with a speaker's speech is scaled to minimize the effects of speaker's vocal tract length on the speech recognition performance In order to normalize vocal tract length, we tried several frequency warping functions such as linear and piece-wise linear function. Variable interval piece-wise linear warping function is proposed to effectively model the variation of frequency axis scale due to the large variation of vocal tract length. Experimental results on TIDIGITS connected digits showed the dramatic reduction of word error rates from 2.15% to 0.53% by the proposed vocal tract normalization.
In this study, we propose a model that extracts and analyzes features from deep learning-based speech signals, generates filters, and utilizes these filters to recognize emotions in speech signals. We evaluate the performance of emotion recognition accuracy using the proposed model. According to the simulation results using the proposed model, the average emotion recognition accuracy of DNN and RNN was very similar, at 84.59% and 84.52%, respectively. However, we observed that the simulation time for DNN was approximately 44.5% shorter than that of RNN, enabling quicker emotion prediction.
최근 정지영상, 동영상, 음성 등의 멀티미디어 컨텐트가 디지털화 되고 네트워크가 발달함에 따라 영상을 포함한 멀티미디어 데이터의 접근이 용이해 졌다. 이러한 데이터의 불법적 사용과 인위적인 조작으로부터 소유권과 저작권을 효율적으로 보호하기 위한 워터마킹 기술이 많이 연구되고 있다. 일반적으로 정지 영상 및 음성에 대한 워터마킹 기술은 많이 연구가 되었지만 이러한 방법을 동영상에 그대로 적용하기에는 실시간 처리에 적용하기가 힘들다는 큰 문제점이 있다. 따라서 본 논문에서는 비디오 신호에서의 빠른 처리과정과 실시간으로 워터마크를 삽입하고, 원 영상 없이 워터마크를 추출 할 수 있는 새로운 방법(Blind Watermarking)을 제안하고자 한다. 제안한 방법은 대역확산을 근거로 하여 워터마크 은닉 과정에서 치환(Permutation) 과정과 LSB 부호화 방법을 이용하여 비디오 시퀀스의 모든 I-프레임에 은닉한다. 복원과정은 모든 I-프레임에서 LSB 복호화와 역 치환 과정을 거쳐 본래의 저작권 정보를 추출한다. 제안한 방법을 여러 가지 동영상 비디오에 적용해 본 결과 기존의 워터마킹 방법보다 효율적이고 시각적 손상이 없었으며 빠른 실시간 처리가 가능함을 볼 수 있었다.
본 논문에서는 전화망 환경에서 음성 인식 성능을 개선하기 위한 특징 벡터 추출 단계에서의 처리 방법들을 연구하였다. 먼저, 고립 단어 인식 시스템에서 채널 왜곡 보상 방 법들을 단어 모델과 문맥 독립 음소 모델에 대하여 인식 실험을 하였다. 켑스트럼 평균 차 감법, RASTA 처리, 켑스트럼-시간 행렬을 실험하였으며, 인식 모델에 따른 각 알고리즘의 성능을 비교하였다. 둘째로, 문맥 독립 음소 모델을 이용한 인식 시스템의 성능 향상을 위하 여 정적 특징 벡터에 대하여 주성분 분석 방법(principal component analysis)과 선형 판별 분석(linear discriminant analysis)과 같은 선형 변환 방법을 적용하여 분별력이 높은 벡터 공간으로 변환함으로써 인식 성능을 향상시켰다. 또한 선형 변환 방법을 켑스트럼 평균 차 감법과 결합하여 더욱 뛰어난 성능을 보여주었다.
Kim Ki-Hong;Hong Jin-Keun;Jung Yong-Ik;Lee Sang-Yi
Proceedings of the KAIS Fall Conference
/
2004.11a
/
pp.114-117
/
2004
본 논문에서는 합성에 의한 분석(Analysis-by-Synthesis) 및 가산중첩(Overlap-Add) 방식을 채택하고 있는 음성신호의 AbS/OLA 정현파 모델에 웨이블릿 변환을 적용한 새로운 모델을 제안하였다. 즉, 기존의 모델에 웨이블릿 변환을 적용하여 입력신호를 몇 개의 부대역 신호로 나눈 다음 각각 다른 길이의 분석 윈도우를 적용한다. 이는 기존 모델의 정현파 파라미터 추출 시 고정된 길이의 분석 윈도우를 이용하는 단점을 극복하여 좀 더 정확한 파라미터 추출을 가능하게 한다. 시험결과 제안된 정현파 모델이 기존 모델에 비해 합성음의 스펙트럼 및 위상 특성, 음질 등에서 성능이 개선됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.