• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.024 seconds

An On-line Speech and Character Combined Recognition System for Multimodal Interfaces (멀티모달 인터페이스를 위한 음성 및 문자 공용 인식시스템의 구현)

  • 석수영;김민정;김광수;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.216-223
    • /
    • 2003
  • In this paper, we present SCCRS(Speech and Character Combined Recognition System) for speaker /writer independent. on-line multimodal interfaces. In general, it has been known that the CHMM(Continuous Hidden Markov Mode] ) is very useful method for speech recognition and on-line character recognition, respectively. In the proposed method, the same CHMM is applied to both speech and character recognition, so as to construct a combined system. For such a purpose, 115 CHMM having 3 states and 9 transitions are constructed using MLE(Maximum Likelihood Estimation) algorithm. Different features are extracted for speech and character recognition: MFCC(Mel Frequency Cepstrum Coefficient) Is used for speech in the preprocessing, while position parameter is utilized for cursive character At recognition step, the proposed SCCRS employs OPDP (One Pass Dynamic Programming), so as to be a practical combined recognition system. Experimental results show that the recognition rates for voice phoneme, voice word, cursive character grapheme, and cursive character word are 51.65%, 88.6%, 85.3%, and 85.6%, respectively, when not using any language models. It demonstrates the efficiency of the proposed system.

  • PDF

A Study on the Speech Recognition for Commands of Ticketing Machine using CHMM (CHMM을 이용한 발매기 명령어의 음성인식에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.285-290
    • /
    • 2009
  • This paper implemented a Speech Recognition System in order to recognize Commands of Ticketing Machine (314 station-names) at real-time using Continuous Hidden Markov Model. Used 39 MFCC at feature vectors and For the improvement of recognition rate composed 895 tied-state triphone models. System performance valuation result of the multi-speaker-dependent recognition rate and the multi-speaker-independent recognition rate is 99.24% and 98.02% respectively. In the noisy environment the recognition rate is 93.91%.

Comparison of Adult and Child's Speech Recognition of Korean (한국어에서의 성인과 유아의 음성 인식 비교)

  • Yoo, Jae-Kwon;Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.138-147
    • /
    • 2011
  • While most Korean speech databases are developed for adults' speech, not for children's speech, there are various children's speech databases based on other languages. Because there are wide differences between children's and adults' speech in acoustic and linguistic characteristics, the children's speech database needs to be developed. In this paper, to find the differences between them in Korean, we built speech recognizers using HMM and tested them according to gender, age, and the presence of VTLN(Vocal Tract Length Normalization). This paper shows the speech recognizer made by children's speech has a much higher recognition rate than that made by adults' speech and using VTLN helps to improve the recognition rate in Korean.

Language Specific CTC Projection Layers on Wav2Vec2.0 for Multilingual ASR (다국어 음성인식을 위한 언어별 출력 계층 구조 Wav2Vec2.0)

  • Lee, Won-Jun;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.414-418
    • /
    • 2021
  • 다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.

  • PDF

A Real-Time Embedded Speech Recognition System (실시간 임베디드 음성 인식 시스템)

  • 남상엽;전은희;박인정
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.74-81
    • /
    • 2003
  • In this study, we'd implemented a real time embedded speech recognition system that requires minimum memory size for speech recognition engine and DB. The word to be recognized consist of 40 commands used in a PCS phone and 10 digits. The speech data spoken by 15 male and 15 female speakers was recorded and analyzed by short time analysis method, which window size is 256. The LPC parameters of each frame were computed through Levinson-Burbin algorithm and they were transformed to Cepstrum parameters. Before the analysis, speech data should be processed by pre-emphasis that will remove the DC component in speech and emphasize high frequency band. Baum-Welch reestimation algorithm was used for the training of HMM. In test phone, we could get a recognition rate using likelihood method. We implemented an embedded system by porting the speech recognition engine on ARM core evaluation board. The overall recognition rate of this system was 95%, while the rate on 40 commands was 96% and that 10 digits was 94%.

Performance Evaluation of Variable-Vocabulary Isolated Word Speech Recognizers with Maximum a Posteriori (MAP) Estimation-Based Speaker Adaptation in an Office Environment (최대 사후 추정 화자 적응을 이용한 가변어휘 고립단어 음성인식기의 사무실 환경에서의 성능 평가)

  • 권오욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.84-89
    • /
    • 1998
  • 본 논문에서는 임의의 단어를 인식하기 위하여 음성학적으로 최적화된 (phonetically-optimized word) 음성 데이터베이스를 사용하여 훈련된 가변어휘 고립단위 음 성인식기의 실제 인식기 사용 환경에서의 성능을 평가하였다. 이를 위하여, 훈련 데이터베이 스에서와 상이한 환경에서 수집된 음성학적으로 균형 잡힌(phonetically-balanced word) 고 립 단어 음성을 테스트 데이터로 사용하였다. 테스트 데이터는 일반적인 사무실에서 작동하 는 노트북 PC에서 내장 마이크를 사용하여 녹음되었다. 이렇게 녹음된 음성을 사용하여 고 립단어 인식기의 인식률을 측정하였다. 이 인식기는 최대 사후(maximum a posteriori) 추정 알고리듬을 사용하여 화자의 변화에 적응하였다. 컴퓨터 모의실험 결과에 의하면 화자 적응 을 하지 않은 기본 시스템은 깨끗한 음성에 대하여 81.3%에서 사무실 환경 음성에 대하여 69.8%로 인식률이 저하되었다. 사무실 환경 음성에 대하여, 비교사 점진(unsupervised incremental) 모드에서 최대 사후 추정 화자 적응 알고리듬을 적용하였을 경우에는 화자적 응을 하지 않은 경우에 비하여 9%의 에러를 감소시키며, 50단어의 적응 단어를 사용하여 교사 묶음(supervised batch) 모드에서 최대 사후 추정 화자 적응 알고리듬을 적용하였을 경우에는 16%의 에러를 감소시켰다.

  • PDF

Development of a Pseudomorpheme-Based Large Vocabulary Continuous Speech Recognizer (의사형태소 단위 대어휘 연속 음성 인식기 개발)

  • 권오욱
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.320-327
    • /
    • 1998
  • 대어휘 연속음성인식을 목표로 개발한 의사형태소 단위의 인식기를 기술하였다. 먼저 의상형태소를 정의하고, 의사형태소 태거를 간단히 기술하며, 의사형태소의 병합에 의한 인식단위 결정방법, 의사형태소 단위 인식기에서 특히 고려되어야 할 음향모델링, 품사 정보를 이용한 언어모델 및 어절규칙의 적용 방안, 의사형태소 단위 인식을 위한 새로운 탐색기 구조를 기술한다. 약 5,500 어절의 인식어휘를 갖는 여행계획 영역의 대화체 연속음성 데이터베이스를 이용하여 초벌 인식실험을 한 결과, 의사형태소 단위의 인식기의 단어인식률은 66.4%, 어절인식률은 60.0%를 나타내었다.

  • PDF

Design of Multi-Purpose Preprocessor for Keyword Spotting and Continuous Language Support in Korean (한국어 핵심어 추출 및 연속 음성 인식을 위한 다목적 전처리 프로세서 설계)

  • Kim, Dong-Heon;Lee, Sang-Joon
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.225-236
    • /
    • 2013
  • The voice recognition has been made continuously. Now, this technology could support even natural language beyond recognition of isolated words. Interests for the voice recognition was boosting after the Siri, I-phone based voice recognition software, was presented in 2010. There are some occasions implemented voice enabled services using Korean voice recognition softwares, but their accuracy isn't accurate enough, because of background noise and lack of control on voice related features. In this paper, we propose a sort of multi-purpose preprocessor to improve this situation. This supports Keyword spotting in the continuous speech in addition to noise filtering function. This should be independent of any voice recognition software and it can extend its functionality to support continuous speech by additionally identifying the pre-predicate and the post-predicate in relative to the spotted keyword. We get validation about noise filter effectiveness, keyword recognition rate, continuous speech recognition rate by experiments.

Robust Speech Recognition with Car Noise based on the Wavelet Filter Banks (웨이블렛 필터뱅크를 이용한 자동차 소음에 강인한 고립단어 음성인식)

  • Lee, Dae-Jong;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2002
  • This paper proposes a robust speech recognition algorithm based on the wavelet filter banks. Since the proposed algorithm adopts a multiple band decision-making scheme, it performs robustness for noise as the presence of noisy severely degrades the performance of speech recognition system. For evaluating the performance of the proposed scheme, we compared it with the conventional speech recognizer based on the VQ for the 10-isolated korean digits with car noise. Here, the proposed method showed more 9~27% improvement of the recognition rate than the conventional VQ algorithm for the various car noisy environments.

배경잡음 하에서의 신경회로망에 의한 남성화자 및 여성화자의 성별인식 알고리즘

  • Choe, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.515-517
    • /
    • 2013
  • 본 논문에서는 잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다.

  • PDF