A new feature extraction technique utilizing strange attractor and artificial neural network for speaker recognition is presented. Since many signals change their characteristics over long periods of time, simple time-domain processing techniques should e capable of providing useful information of signal features. In many cases, normal time series can be viewed as a dynamical system with a low-dimensional attractor that can be reconstructed from the time series using time delay. The reconstruction of strange attractor is described. In the technique, the raw signal will be reproduced into a geometric three dimensional attractor. Classification decision for speaker recognition is based upon the processing or sets of feature vectors that are derived from the attractor. Three different methods for feature extraction will be discussed. The methods include box-counting dimension, natural measure with regular hexahedron and plank-type box. An artificial neural network is designed for training the feature data generated by the method. The recognition rates are about 82%-96% depending on the extraction method.
Speech recognition errors cause fatal results in a spoken dialogue system. When a system can not determine the speech-act of u utterance due to speech recognition errors, a dialogue system has a difficulty in continuing conversation. In this paper, we propose strategies for sub-dialogue generation by inferring the speech-act of an utterance with patterns of recognition errors on the field of form-filling dialogue. We used the proposed method on a plan-based dialogue model, corrected 27% of incomplete tasks, and acquired overall 89% of task completion rate.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.327-330
/
1998
독립성분분석(ICA: Independent Component Analysis)이란 특징이 상이한 둘 이상의 신호들이 선형적으로 결합되어 있을 때 이를 효과적으로 분리하는 방법들을 통칭하며 잡음제거, 음질개선 및 신호처리 분야에서 많이 활용되고 있다. 본 논문에서는 전화음성 화자인식 시스템의 성능향상을 위해 독립성분분석을 이용하는 방법을 제안한다. 먼저 화자가 발성한 음성신호의 켑스트럼 계수를 여러 채널 함수들의 선형적인 합으로 가정하고, 독립성분분석을 이용하여 얻은 새로운 켑스트럼 벡터를 학습과 인식에 사용하였다. 실험자료는 잔화음성 화자식별기의 성능평가에 널리 쓰이고 있는 SPIDRE를 사용하였고 regodic 은닉 마코프 모델을 이용하여 문장 독립 화자식별 시스템을 구성하였다. 학습음성의 특징과 실험음성의 특징이 다른 조건에서 기존의 채널 정규화 방법들에 비해 10~15%이상 인식률이 향상되었다.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.05a
/
pp.26-26
/
2004
산업용으로 주로 쓰이던 로봇이 인간의 생활에 밀접하게 다가오면서 인간과 로봇의 활동공간의 공유가 늘어가고 있다. 이로 인하여 접하는 시간이 증대되어 인간과 친밀한 인터페이스 구현에 대한 연구가 활발히 진행되고 있으며, 이와 관련하여 지능형 로봇에 있어 음성시스템은 필수적이다. 최근 통신분야와 관련하여 음성인식과 음성합성의 기술이 급속히 발전하고 있으나, 음성인식에 있어 현재 헤드?을 이용하거나 마이크로폰에서 약 30cm정도 떨어진 거리에서 음성을 인식하는 것이 일반적이며, 그 이상의 거리에서나 잡음이 존재하는 실제 환경에서 인식률이 급격히 떨어져 이동롯봇과 같은 실용시스템과의 접목하는 기술이 부족한 상황이다.(중략)
성능향상에 관한 실험을 하였다. 화자식별 방식은 등록된 음성과 테스트 음성을 비교하여 결정논리에 의하여서 화자를 식별하는 방식이다. 이러한 시스템에서 전처리(preprocessing)를 어떻게 해 주느냐에 따라서 인식률에 큰 영향을 미치게 된다. 본 논문에서는 전처리 과정 중에서 음성구간 검출에 대한 실험을 수행하여 성능을 비교 하였다. 본 논문에서는 시간영역에서 안정구간(stationary region)과 전이구간(transition region)에서 Normalized AMDF를 적용하였을 때 피치점에서 골(valley)의 기울기가 크다는 점을 이용하여 유성을 검출하였다. 그리고 검출된 유성음 구간 앞뒤로 인접 샘플의 자기상관관계함수(Autocorrelation)의 비를 이용하여 무성음을 검출하였다. 결과적으로 처리시간은 비슷하였으나 전체 인식률은 약 2%정도 개선되었다.
Recently, speech recognition models have been advancing, accompanied by the development of various speech processing technologies to obtain high-quality data. In the defense sector, efforts are being made to integrate technologies that effectively remove noise from speech data in noisy battlefield situations and enable efficient speech recognition. This paper proposes a method for effective speech recognition in the midst of diverse noise in a battlefield scenario, allowing commanders to convey orders. The proposed method involves noise removal from noisy speech followed by text conversion using OpenAI's Whisper model. Experimental results show that the proposed method reduces the Character Error Rate (CER) by 6.17% compared to the existing method that does not remove noise. Additionally, potential applications of the proposed method in the defense are discussed.
Recently interests in voice game commands have been increasing due to the diversity and convenience of the input method, but also by the distance between commands. The command distance is the phonetic difference between command utterances, and as such distance increases, the recognition rate improves. In this paper, we propose an IP(Integer Programming) modeling of the problem which is to select a combination of commands from given candidate commands for maximizing the average distance. We also propose a SA(Simulated Annealing)-based algorithm for solving the problem. We analyze the characteristics of our method using experiments under various conditions such as the number of commands, allowable command length, and so on.
This paper presents a massively parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language model is based on a knowledge base approach. To construct the knowledge base, we adopt a hierarchically-structured semantic network and a memory-based parsing technique that employs parallel marker-passing as an inference mechanism. Our parallel speech recognition algorithm is implemented in a multi-Transputer system using distributed-memory MIMD multiprocessors. Experimental results show that the parallel speech recognition system performs better in recognition accuracy than a word network-based speech recognition system. The recognition accuracy is further improved by applying code-phoneme statistics. Besides, speedup experiments demonstrate the possibility of constructing a realtime parallel speech recognition system.
Proceedings of the Acoustical Society of Korea Conference
/
1991.06a
/
pp.54-57
/
1991
본 논무에서는 HMM과 VQ를 이용한 고립단어에 대한 화자종속 및 화자독립 음성인식시스템을 만들고 여기에 화자적응을 하는 방법에 대한 연구를 했다. 화자적응방법에는 크게 VQ코드북을 적응시키는 방법과 HMM패러미터블 적응시키는 방법이 있다. 코드북적응을 하는 방법으로서 기존코드북에 대해 새로운화자의 적응음성을 양자화한 뒤 각 코드벡터에 해당하는 적응음성의 평균을 구해서 새로운 화자의 코드북을 구해주는 방법과 기준코드북에 대해 새로운화자의 적응음성을 양자화할 때 HMM의 각 상태에서 각각의 코드벡터를 발생할 확률을 거리오차의 계산에서 고려해 비록 거리오차는 크지만 그 코드벡터를 발생할 확률이 매우 높으면 적응음성이 그 코드벡터에 index되게해서 각 코드벡터에 해당하는 모든 적응음성데이타의 평균을 새로운 코드북으로 하는 두가지 알고리즘을 제안한다. 이렇게 함으로써 기존의 기준코드북을 초기 코드북으로해서 LBG알고리즘을 사용해서 적응음성데이타에 대한 새로운 코드북을 만드는 방법에 비해 5-10배의 계산시간을 감소하게 된다. 이 새로운 코드북으로 적응음성데이타를 다시 index해서 이 index된 음성렬로 HMM패러미터를 적응했다. 제안된 알고리즘이 코드북적응을 하는 경우에 기존의 적응방법에 비해 5-10배의 계산 시간을 단축하면서 인식률에서는 더 나은결과를 얻었다. 또 같은 적응방법에 대해서 화자종속모델 보다는 화자독립모델에 대해서 화자적응하는 것이 더 나은 인식결과를 보여주었다.
Proceedings of the Acoustical Society of Korea Conference
/
1996.10a
/
pp.76-79
/
1996
본 논무에서는 한국어 음소를 대상으로 Kohonen 이 제안한 LVQ2 방법의 결저을 보완한 MLVQ2 방법으로 인식실험을 행하고 MLVQ2 알고리즘의 유효성을 검토하고자 한다. 인식실험을 위한 음성자료는 ETRI 611단어로부터 추출한 49음소를 사용하였다. 그리고 인식실험에 있어서는 먼저 파열음을 대상으로 학습회수, 표준패턴의 수, 샘플수에 따른 인식률의 변화를 조사하였으며, 이 결과 표준패턴의 수 15개, 학습회수 10회 이하, 샘플 수 3000 개일 경우가 가장 좋은 인식률을 보였다. 이 결과를 참고로 음소군별 인식실험 결과 모음 69.11%, 파열음 74.69%, 마찰음 및 파찰음 86.31%비음 및 유음 74.51%의 평균 인식률을 얻었다. 또한 , 한국어 49음소 전음소에 대한 인식실험 결과 71.2%의 인식률 얻어 MLVQ2의 유효성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.