본 논문에서는 음성 인식률 향상을 위한 여러 가지방법들 중에서 음성특징 파라미터 추출 방법에 관한 한가지 방법을 제시하였다. 본 논문에서는 청각 특성을 기반으로 한 MFCC(met frequency cepstrum coef-ficients)와 성능 향상을 위한 방법으로 GFCC (gamma-tone filter frequency cepstrum coefficients)를 제시하고 음성 인식을 수행하여 성능을 분석하였다. MFCC에서 일반적으로 사용하는 임계 대역 필터로 삼각 필터(triangular filter) 대신 청각 구조의 기저막(basilar membrane)특성을 묘사한 gammatone 대역 통과 필터를 이용하여 특징 파라미터를 추출하였다. DTW 알고리즘으로 인식률을 분석한 결과 삼각 대역 필터를 이용한 것보다 gammatone 대역 통과 필터를 이용한 추출법이 약 2∼3%의 성능 향상을 보였다.
This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.56-57
/
2013
본 논문에서는 연극공연을 관람하는 관객의 반응정보를 수집하기 위하여, 청각센서를 통해 관객의 음성을 획득하고 획득된 음성에 대한 감정을 예측하여 관객 반응정보 관리시스템에 전송하는 음성신호 기반 감정인식 시스템을 구현한다. 이를 위해, 관객용 헤드셋 마이크와 다채널 녹음장치를 이용하여 관객음성을 획득하는 인터페이스와 음성신호의 특징벡터를 추출하여 SVM (support vector machine) 분류기에 의해 감정을 예측하는 시스템을 구현하고, 이를 관객 반응정보 수집 시스템에 적용한다. 실험결과, 구현된 시스템은 6가지 감정음성 데이터를 활용한 성능평가에서 62.5%의 인식률을 보였고, 실제 연극공연 환경에서 획득된 관객음성과 감정인식 결과를 관객 반응정보 수집 시스템에 전송함을 확인하였다.
본 논문은 오디오와 비디오 정보의 융합을 통한 멀티 모달 음성 인식 시스템을 제안한다. 음성 특징 정보와 영상 정보 특징의 융합을 통하여 잡음이 많은 환경에서 효율적으로 사람의 음성을 인식하는 시스템을 제안한다. 음성 특징 정보는 멜 필터 캡스트럼 계수(Mel Frequency Cepstrum Coefficients: MFCC)를 사용하며, 영상 특징 정보는 주성분 분석을 통해 얻어진 특징 벡터를 사용한다. 또한, 영상 정보 자체의 인식률 향상을 위해 피부 색깔 모델과 얼굴의 형태 정보를 이용하여 얼굴 영역을 찾은 후 강력한 입술 영역 추출 방법을 통해 입술 영역을 검출한다. 음성-영상 융합은 변형된 시간 지연 신경 회로망을 사용하여 초기 융합을 통해 이루어진다. 실험을 통해 음성과 영상의 정보 융합이 음성 정보만을 사용한 것 보다 대략 5%-20%의 성능 향상을 보여주고 있다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.103-106
/
1998
본 논문에서는 음성인식 시스템의 인식 정도의 향상을 위해서 동적 특징으로서 K-L(Karhanen-Loeve)계수를 이용하여 음소모델을 구성하는 방법을 제안하고, 음소, 단어, 숫자음 인식 실험을 통하여 그 유효성을 검토하였다. 인식 실험을 위한 음성자료는 한국 전자통신 연구소에서 채록한 445단어와 국어정보공학연구소에서 채록한 4연속 숫자음을 사용하였으며, K-L계수 동적 특징의 유효성을 확인하기 위해 정적 특징으로서 멜-켑스트럼과 동적 특징으로서 K-L계수 및 회귀계수를 추출한 후 음소, 단어, 숫자음 인식 실험을 수행하였다. 인식의 기본 단위로는 48개의 유사음소단위(Phoneme Likely Unite ; PLUs)를 음소모델로 사용하였으며, 단어와 숫자음 인식을 위해서는 유한상태 오토마타(Finite State Automata; FSA)에 의한 구문제어를 통한 OPDP(One Pass Dynamic Programming)법을 이용하였다. 인식 실험 결과, 음소인식에 있어서는 정적특징인 멜-켑스트럼을 사용한 경우 39.8%, K-L 동적 계수를 사용한 경우가 52.4%로 12.6%의 향상된 인식률을 얻었다. 또한, 멜-켑스트럼과 회수계수를 사용한 경우 60.1%, K-L계수와 회귀계수를 결합한 경우에 있어서도 60.4%로 높은 인식률은 얻었다. 이 결과를 단어인식에 확장하여 인식 실험을 수행한 결과, 기존의 멜-켑스트럼 계수를 사용한 경우 65.5%, K-L계수를 사용한 경우 75.8%로 10.3% 향상된 인식률을 얻었으며, 멜-켑스트럼과 회귀계수를 결합한 경우 91.2%, K-L계수와 회귀계수를 결합한 경우 91.4%의 높은 인식률을 보였다. 도한, 4연속 숫자음에 적용한 경우에 있어서도 멜-켑스트럼을 사용한 경우 67.5%, K-L계수를 사용한 경우 75.3%로 7.8%의 향상된 인식률을 보였으며 K-L계수와 회귀계수를 결합한 경우에서도 비교적 높은 인식률을 보여 숫자음에 대해서도 K-L계수의 유효성을 확인할 수 있었다.
본 논문의 병렬음성인식 모델은 연속 은닉 마코프 모델(HMM; hidden Markov model)에 기반한 병렬 음소인식모듈과 계층구조의 지식베이스에 기반한 병렬 문장인식모듈로 구성된다. 병렬 음소인식 모듈은 수천개의 HMM을 병렬 프로세서에 분산시킨 수, 할당된 HMM에 대한 출력확률 계산과 Viterbi 알고리즘을 담당한다. 지식베이스 기반 병렬 문장인식모듈은 음소모듈에서 공급되는 음소열과 지안하는 병렬 음성인식 알고리즘은 분산메모리 MIMD 구조의 다중 트랜스퓨터와 Parsytec CC 상에 구현되었다. 실험결과, 병렬 음소인식모듈을 통한 실행시간 향상과 병렬 문장인식모듈을 통한 인식률 향상을 얻을 수 있었으며 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.
Jung, Sang-Keun;Jeong, Min-Woo;Lee, Gary Geun-Baee
Annual Conference on Human and Language Technology
/
2004.10d
/
pp.200-204
/
2004
음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로. 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는, 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.
입 모양 인식은 음성인식의 중요한 부분 중 하나로 이를 개선하기위한 다양한 연구가 진행되어 왔다. 기존의 연구에서는 주로 입술주변 영역을 관찰하고 인식하는데 초점을 두었으나, 본 논문은 음성인식 시스템에서 기존의 입술영역과 함께 입술, 턱, 뺨 등 다른 관심 영역을 고려하여 음성인식 시스템의 입모양 인식 성능을 비교하였다. 입 모양 인식의 관심 영역을 자동으로 검출하기 위해 객체 탐지 인공신경망을 사용하며, 이를 통해 다양한 관심영역을 실험하였다. 실험 결과 입술영역만 포함하는 ROI 에 대한 결과가 기존의 93.92%의 평균 인식률보다 높은 97.36%로 가장 높은 성능을 나타내었다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.73-76
/
2001
본 논문에서는 음소인식기와 음소결합확률모델을 이용하여 전화음성을 대상으로 입력음성이 어느 나라 말 인지를 식별할 수 있는 언어식별시스템을 구현하였고 성능을 실험하였다. 시스템은 음소인식기로 입력음성에 대한 음소열을 인식하는 과정, 인식된 음소열을 이용하여 인식대상 언어별 음소결합확률모델을 생성하는 훈련과정, 훈련과정에서 생성된 음소결합확률모델로부터 확률 값을 계산하여 인식결과를 출력하는 식별과정으로 구성된다. 본 논문에서는 음소결합확률모델로부터 우도를 계산할 때 정보이론(Information Theory, Shannon and Weaver, 1949)을 이용하여 가중치를 적용하는 방법을 제안하였다. 시스템의 훈련 및 실험에는 OGI 11개국어 전화음성 corpus (OGI-TS)를 사용하였으며, 음소인식기는 HTK를 이용하여 구현하였고 음소인식기 훈련에는 NTIMIT 전화음성 DB를 이용하였다. 실험결과 11개국어를 대상으로 45초 길이의 음성에 대해서 평균 $74.1\%$, 10초 길이의 음성에 대해서는 평균 $57.1\%$의 인식률을 얻을 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.5
no.2
/
pp.90-97
/
2000
This paper describes an speaker-adaptive speech recognition system which make a reliable recognition of speech signal for new speakers. In the Proposed method, an speech spectrum of new speaker is adapted to the reference speech spectrum by using Parameters of a 1st linear transformation network at the front of phoneme classification neural network. And the recognition system is based on semicontinuous HMM(hidden markov model) which use the multilayer perceptron as a fuzzy vector quantizer. The experiments on the isolated word recognition are performed to show the recognition rate of the recognition system. In the case of speaker adaptation recognition, the recognition rate show significant improvement for the unadapted recognition system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.