• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.028 seconds

Performance of analysis and extraction of speech feature using characteristics of basilar membrane (기저막 특성을 이용한 새로운 음성 특징 추출 및 성능 분석)

  • 이철희;신유식;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.153-156
    • /
    • 2000
  • 본 논문에서는 음성 인식률 향상을 위한 여러 가지방법들 중에서 음성특징 파라미터 추출 방법에 관한 한가지 방법을 제시하였다. 본 논문에서는 청각 특성을 기반으로 한 MFCC(met frequency cepstrum coef-ficients)와 성능 향상을 위한 방법으로 GFCC (gamma-tone filter frequency cepstrum coefficients)를 제시하고 음성 인식을 수행하여 성능을 분석하였다. MFCC에서 일반적으로 사용하는 임계 대역 필터로 삼각 필터(triangular filter) 대신 청각 구조의 기저막(basilar membrane)특성을 묘사한 gammatone 대역 통과 필터를 이용하여 특징 파라미터를 추출하였다. DTW 알고리즘으로 인식률을 분석한 결과 삼각 대역 필터를 이용한 것보다 gammatone 대역 통과 필터를 이용한 추출법이 약 2∼3%의 성능 향상을 보였다.

  • PDF

Speech Recognition Using MSVQ/TDRNN (MSVQ/TDRNN을 이용한 음성인식)

  • Kim, Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.268-272
    • /
    • 2014
  • This paper presents a method for speech recognition using multi-section vector-quantization (MSVQ) and time-delay recurrent neural network (TDTNN). The MSVQ generates the codebook with normalized uniform sections of voice signal, and the TDRNN performs the speech recognition using the MSVQ codebook. The TDRNN is a time-delay recurrent neural network classifier with two different representations of dynamic context: the time-delayed input nodes represent local dynamic context, while the recursive nodes are able to represent long-term dynamic context of voice signal. The cepstral PLP coefficients were used as speech features. In the speech recognition experiments, the MSVQ/TDRNN speech recognizer shows 97.9 % word recognition rate for speaker independent recognition.

A Speech Emotion Recognition System for Audience Response Collection (관객 반응정보 수집을 위한 음성신호 기반 감정인식 시스템)

  • Kang, Jin Ah;Kim, Hong Kook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.56-57
    • /
    • 2013
  • 본 논문에서는 연극공연을 관람하는 관객의 반응정보를 수집하기 위하여, 청각센서를 통해 관객의 음성을 획득하고 획득된 음성에 대한 감정을 예측하여 관객 반응정보 관리시스템에 전송하는 음성신호 기반 감정인식 시스템을 구현한다. 이를 위해, 관객용 헤드셋 마이크와 다채널 녹음장치를 이용하여 관객음성을 획득하는 인터페이스와 음성신호의 특징벡터를 추출하여 SVM (support vector machine) 분류기에 의해 감정을 예측하는 시스템을 구현하고, 이를 관객 반응정보 수집 시스템에 적용한다. 실험결과, 구현된 시스템은 6가지 감정음성 데이터를 활용한 성능평가에서 62.5%의 인식률을 보였고, 실제 연극공연 환경에서 획득된 관객음성과 감정인식 결과를 관객 반응정보 수집 시스템에 전송함을 확인하였다.

  • PDF

Audio-Visual Integration based Multi-modal Speech Recognition System (오디오-비디오 정보 융합을 통한 멀티 모달 음성 인식 시스템)

  • Lee, Sahng-Woon;Lee, Yeon-Chul;Hong, Hun-Sop;Yun, Bo-Hyun;Han, Mun-Sung
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.707-710
    • /
    • 2002
  • 본 논문은 오디오와 비디오 정보의 융합을 통한 멀티 모달 음성 인식 시스템을 제안한다. 음성 특징 정보와 영상 정보 특징의 융합을 통하여 잡음이 많은 환경에서 효율적으로 사람의 음성을 인식하는 시스템을 제안한다. 음성 특징 정보는 멜 필터 캡스트럼 계수(Mel Frequency Cepstrum Coefficients: MFCC)를 사용하며, 영상 특징 정보는 주성분 분석을 통해 얻어진 특징 벡터를 사용한다. 또한, 영상 정보 자체의 인식률 향상을 위해 피부 색깔 모델과 얼굴의 형태 정보를 이용하여 얼굴 영역을 찾은 후 강력한 입술 영역 추출 방법을 통해 입술 영역을 검출한다. 음성-영상 융합은 변형된 시간 지연 신경 회로망을 사용하여 초기 융합을 통해 이루어진다. 실험을 통해 음성과 영상의 정보 융합이 음성 정보만을 사용한 것 보다 대략 5%-20%의 성능 향상을 보여주고 있다.

  • PDF

Word Recognition Using K-L Dynamic Coefficients (K-L 동적 계수를 이용한 단어 인식)

  • 김주곤
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.103-106
    • /
    • 1998
  • 본 논문에서는 음성인식 시스템의 인식 정도의 향상을 위해서 동적 특징으로서 K-L(Karhanen-Loeve)계수를 이용하여 음소모델을 구성하는 방법을 제안하고, 음소, 단어, 숫자음 인식 실험을 통하여 그 유효성을 검토하였다. 인식 실험을 위한 음성자료는 한국 전자통신 연구소에서 채록한 445단어와 국어정보공학연구소에서 채록한 4연속 숫자음을 사용하였으며, K-L계수 동적 특징의 유효성을 확인하기 위해 정적 특징으로서 멜-켑스트럼과 동적 특징으로서 K-L계수 및 회귀계수를 추출한 후 음소, 단어, 숫자음 인식 실험을 수행하였다. 인식의 기본 단위로는 48개의 유사음소단위(Phoneme Likely Unite ; PLUs)를 음소모델로 사용하였으며, 단어와 숫자음 인식을 위해서는 유한상태 오토마타(Finite State Automata; FSA)에 의한 구문제어를 통한 OPDP(One Pass Dynamic Programming)법을 이용하였다. 인식 실험 결과, 음소인식에 있어서는 정적특징인 멜-켑스트럼을 사용한 경우 39.8%, K-L 동적 계수를 사용한 경우가 52.4%로 12.6%의 향상된 인식률을 얻었다. 또한, 멜-켑스트럼과 회수계수를 사용한 경우 60.1%, K-L계수와 회귀계수를 결합한 경우에 있어서도 60.4%로 높은 인식률은 얻었다. 이 결과를 단어인식에 확장하여 인식 실험을 수행한 결과, 기존의 멜-켑스트럼 계수를 사용한 경우 65.5%, K-L계수를 사용한 경우 75.8%로 10.3% 향상된 인식률을 얻었으며, 멜-켑스트럼과 회귀계수를 결합한 경우 91.2%, K-L계수와 회귀계수를 결합한 경우 91.4%의 높은 인식률을 보였다. 도한, 4연속 숫자음에 적용한 경우에 있어서도 멜-켑스트럼을 사용한 경우 67.5%, K-L계수를 사용한 경우 75.3%로 7.8%의 향상된 인식률을 보였으며 K-L계수와 회귀계수를 결합한 경우에서도 비교적 높은 인식률을 보여 숫자음에 대해서도 K-L계수의 유효성을 확인할 수 있었다.

  • PDF

A Parallel Speech Recognition System based on Hidden Markov Model (은닉 마코프 모델 기반 병렬음성인식 시스템)

  • Jeong, Sang-Hwa;Park, Min-Uk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.12
    • /
    • pp.951-959
    • /
    • 2000
  • 본 논문의 병렬음성인식 모델은 연속 은닉 마코프 모델(HMM; hidden Markov model)에 기반한 병렬 음소인식모듈과 계층구조의 지식베이스에 기반한 병렬 문장인식모듈로 구성된다. 병렬 음소인식 모듈은 수천개의 HMM을 병렬 프로세서에 분산시킨 수, 할당된 HMM에 대한 출력확률 계산과 Viterbi 알고리즘을 담당한다. 지식베이스 기반 병렬 문장인식모듈은 음소모듈에서 공급되는 음소열과 지안하는 병렬 음성인식 알고리즘은 분산메모리 MIMD 구조의 다중 트랜스퓨터와 Parsytec CC 상에 구현되었다. 실험결과, 병렬 음소인식모듈을 통한 실행시간 향상과 병렬 문장인식모듈을 통한 인식률 향상을 얻을 수 있었으며 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.

  • PDF

CONFIDENCE MEAUSRING METHOD FOR CONTIUOUS SPEECH RECOGNITION USING MAXIMUM ENTROPY MODEL (최대 엔트로피 모델을 이용한 연속음성인식에서의 인식 신뢰도 측정)

  • Jung, Sang-Keun;Jeong, Min-Woo;Lee, Gary Geun-Baee
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.200-204
    • /
    • 2004
  • 음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로. 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는, 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.

  • PDF

RoI Detection Method for Improving Lipreading Reading in Speech Recognition Systems (음성인식 시스템의 입 모양 인식개선을 위한 관심영역 추출 방법)

  • Jae-Hyeok Han;Mi-Hye Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.299-302
    • /
    • 2023
  • 입 모양 인식은 음성인식의 중요한 부분 중 하나로 이를 개선하기위한 다양한 연구가 진행되어 왔다. 기존의 연구에서는 주로 입술주변 영역을 관찰하고 인식하는데 초점을 두었으나, 본 논문은 음성인식 시스템에서 기존의 입술영역과 함께 입술, 턱, 뺨 등 다른 관심 영역을 고려하여 음성인식 시스템의 입모양 인식 성능을 비교하였다. 입 모양 인식의 관심 영역을 자동으로 검출하기 위해 객체 탐지 인공신경망을 사용하며, 이를 통해 다양한 관심영역을 실험하였다. 실험 결과 입술영역만 포함하는 ROI 에 대한 결과가 기존의 93.92%의 평균 인식률보다 높은 97.36%로 가장 높은 성능을 나타내었다.

Language Identification System using phoneme recognizer and phonotactic language model (음소인식기와 음소결합확률모델을 이용한 언어식별시스템)

  • Lee Dae-Seong;Kim Se-Hyun;Oh Yung-Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.73-76
    • /
    • 2001
  • 본 논문에서는 음소인식기와 음소결합확률모델을 이용하여 전화음성을 대상으로 입력음성이 어느 나라 말 인지를 식별할 수 있는 언어식별시스템을 구현하였고 성능을 실험하였다. 시스템은 음소인식기로 입력음성에 대한 음소열을 인식하는 과정, 인식된 음소열을 이용하여 인식대상 언어별 음소결합확률모델을 생성하는 훈련과정, 훈련과정에서 생성된 음소결합확률모델로부터 확률 값을 계산하여 인식결과를 출력하는 식별과정으로 구성된다. 본 논문에서는 음소결합확률모델로부터 우도를 계산할 때 정보이론(Information Theory, Shannon and Weaver, 1949)을 이용하여 가중치를 적용하는 방법을 제안하였다. 시스템의 훈련 및 실험에는 OGI 11개국어 전화음성 corpus (OGI-TS)를 사용하였으며, 음소인식기는 HTK를 이용하여 구현하였고 음소인식기 훈련에는 NTIMIT 전화음성 DB를 이용하였다. 실험결과 11개국어를 대상으로 45초 길이의 음성에 대해서 평균 $74.1\%$, 10초 길이의 음성에 대해서는 평균 $57.1\%$의 인식률을 얻을 수 있었다.

  • PDF

Speaker Adaptation Using Linear Transformation Network in Speech Recognition (선형 변환망을 이용한 화자적응 음성인식)

  • 이기희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.90-97
    • /
    • 2000
  • This paper describes an speaker-adaptive speech recognition system which make a reliable recognition of speech signal for new speakers. In the Proposed method, an speech spectrum of new speaker is adapted to the reference speech spectrum by using Parameters of a 1st linear transformation network at the front of phoneme classification neural network. And the recognition system is based on semicontinuous HMM(hidden markov model) which use the multilayer perceptron as a fuzzy vector quantizer. The experiments on the isolated word recognition are performed to show the recognition rate of the recognition system. In the case of speaker adaptation recognition, the recognition rate show significant improvement for the unadapted recognition system.

  • PDF