Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.05a
/
pp.682-683
/
2017
주변의 배경잡음으로부터 음성인식률을 향상시키기 위하여 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수를 사용한다. 제안한 멜 주파수 켑스트럼 계수의 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다.
This paper is the study for recognizing single vowels of speaker-independent, and we suppose a method of speech recognition using VQ(Vector Quantization)/NN(Neural Network). This method makes a VQ codebook, which is used for obtaining the observation sequence, and then claculates the probability value by comparing each codeword with the data, finally uses these probability values for the input value of the neural network. Korean signle vowels are selected for our recognition experiment, and ten male speakers pronounced eight single vowels ten times. We compare the performance of our method with those of fuzzy VQ/HMM and conventional VQ/NN According to the experiment result, the recognition rate by VQ/NN is 92.3%, by VQ/HMM using fuzzy is 93.8% and by VQ/NN using fuzzy is 95.7%. Therefore, it is shown that recognition rate of speech recognition by fuzzy VQ/NN is better than those of fuzzy VQ/HMM and conventional VQ/HMM because of its excellent learning ability.
This paper is a study on continuous speech recognition in the Korean language using HMM-based models with continuous density functions. Here, we propose the most efficient method of continuous speech recognition for the Korean language under the condition of a continuous HMM model with 2 to 44 density functions. Two voice models were used CI-Model that uses 36 uni-phones and CD-Model that uses 3,000 tri-phones. Language model was based on N-gram. Using these models, 500 sentences and 6,486 words under speaker-independent condition were processed. In the case of the CI-Model, the maximum word recognition rate was 94.4% and sentence recognition rate was 64.6%. For the CD-Model, word recognition rate was 98.2% and sentence recognition rate was 73.6%. The recognition rate of CD-Model we obtained was stable.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.4
/
pp.494-500
/
2008
In the field of development of human interface technology, the interactions between human and machine are important. The research on emotion recognition helps these interactions. This paper presents an algorithm for emotion recognition based on personalized speech signals. The proposed approach is trying to extract the characteristic of speech signal for emotion recognition using PLP (perceptual linear prediction) analysis. The PLP analysis technique was originally designed to suppress speaker dependent components in features used for automatic speech recognition, but later experiments demonstrated the efficiency of their use for speaker recognition tasks. So this paper proposed an algorithm that can easily evaluate the personal emotion from speech signals in real time using personalized emotion patterns that are made by PLP analysis. The experimental results show that the maximum recognition rate for the speaker dependant system is above 90%, whereas the average recognition rate is 75%. The proposed system has a simple structure and but efficient to be used in real time.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.95-98
/
2002
문자인식 또는 음성인식을 위해 사용되어지는 CHMM(Continuous Hidden Markov Model)모델은 일반적으로 모델의 상태수를 일정한 수로 고정하는 고정 상태수 모델 구조를 가지고 있으나, 이는 개별적인 인식 단위의 특성을 고려하지 않은 경우로써 이를 고려한 가변 상태수 모델을 사용할 경우 인식률 향상을 기대할 수 있다. 개별적인 인식 단위에 적합한 모델 상태수를 결정하는 방법으로 파라미터 히스토그램 방법과, BIC(Bayesian Information Criterion)방법을 사용하는 것이 대표적이다. 이들 방법들은 개별적인 인식단위의 우도값만을 향상시키기 위한 방법으로 전체인식률과 직접적으로 비례하지는 않는다. 따라서, 본 논문에서는 고정 상태수를 갖는 모델 적용 방법과 인식단위별 상태수 변화에 따른 인식률을 비교하였으며, 이를 바탕으로 각 모델별 상태수를 달리하는 가변 상태수 CHMM모델 구성 방법을 제안한다. 제안된 가변상태수 모델의 유효성을 확인하기 위해 음성/문자 공용인식기 중 필기체 문자 인식에 적용한 결과 제안한 LM(Local Maximum)으로 구성된 가변 상태수 모델이 MLE와 BIC로 구성된 모델과 인식률 면에서는 거의 동일한 성능을 유지하면서 전체 상태수는 MLE 모델에 비해 $31\%$, BIC로 구성된 모델에 비해 $22\%$ 감소를 나타내어 제안한 모델의 유효성을 확인할 수 있었다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.37-40
/
2001
본 논문에서는 PDA상에서 음성으로 명령어를 제어하기 위해 Window CE 3.0 환경에서 음성인식기를 설계하였다. 전처리과정에서 26차 특징파라미터를 추출하고, HTK를 통해 학습하였다. 트라이폰 기반의 가변어휘 음성인식기를 설계하였으며, PDA의 응용프로그램은 Embedded Visual C++언어를 사용하여 22개의 음성명령어를 제어하도록 하였다. 그 결과 PDA상에서 $92\%의 인식률이 나타났으며 이것은 음성인식이 모바일 환경에서도 접근이 가능함을 알 수 있었다.
원거리 음성인식에서 인식률의 성능향상을 위해 필수적인 다채널 마이크 환경에서 방 안의 도처에 분산되어있는 원거리 마이크를 사용하여 TV, 조명 등의 주변 환경을 음성으로 제어하고자 한다. 이를 위해 각 채널의 인식결과를 통합하여 최적의 결과를 얻고자 채널의N-best 결과와 N-best 결과에 포함된 hypothesis의 frame-normalized likelihood 값을 사용하여 Bayesian network을 훈련하고 인식결과를 통합하여 최선의 결과를 decision 하는데 사용함으로써 원거리 음성인식의 성능을 향상시키고 또한 hands-free 응용을 현실화하기위한 방향을 제시한다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.181-184
/
2000
The new method of feature extraction is proposed, considering the statistic feature of human voice, unlike the conventional methods of voice extraction. PCA(principal Component Analysis) is applied to this new method. PCA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. Then the new method is applied to real voice recognition to assess performance. When results of the number recognition in this paper and the conventional Mel-Cepstrum of voice feature parameter are compared, there is 0.5% difference of recognition rate. Better recognition rate is expected than word or sentence recognition in that less convergence time than the conventional method in extracting voice feature. Also, better recognition tate is expected when the optimum vector is used by statistic feature of data.
Authoring tools for sketching the motion of characters to be animated have been studied. However the natural interface for sound editing has not been sufficiently studied. In this paper, I present a novel method that sound sample is selected by speaking sound-imitation words(onomatopoeia). Experiment with the method based on statistical models, which is generally used for pattern recognition, showed up to 97% in the accuracy of recognition. In addition, to address the difficulty of data collection for newly enrolled sound samples, the GLR Test based on only one sample of each sound-imitation word showed almost the same accuracy as the previous method.
연속적인 음성 인식 결과는 띄어쓰기를 하지 않은 연속 음절 문장들로 이루어져 있다. 본 논문은 음성 인식 후처리 단계에서 연속 음절 문장을 조사/어미 사전을 이용한 어절 생성 과정과 형태소 분석기를 이용하여 어절을 생성한 후 키워드를 추출한다. 실험 결과, 어절 생성기만 적용한 방식보다 제안된 알고리즘의 인식률이 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.