• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.028 seconds

다층 퍼셉트론 네트워크에 의한 연속음성 화자분류

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.682-683
    • /
    • 2017
  • 주변의 배경잡음으로부터 음성인식률을 향상시키기 위하여 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수를 사용한다. 제안한 멜 주파수 켑스트럼 계수의 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다.

  • PDF

Speech Recognition Based on VQ/NN using Fuzzy (Fuzzy를 이용한 VQ/NN에 기초를 둔 음성 인식)

  • Ann, Tae-Ock
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.5-11
    • /
    • 1996
  • This paper is the study for recognizing single vowels of speaker-independent, and we suppose a method of speech recognition using VQ(Vector Quantization)/NN(Neural Network). This method makes a VQ codebook, which is used for obtaining the observation sequence, and then claculates the probability value by comparing each codeword with the data, finally uses these probability values for the input value of the neural network. Korean signle vowels are selected for our recognition experiment, and ten male speakers pronounced eight single vowels ten times. We compare the performance of our method with those of fuzzy VQ/HMM and conventional VQ/NN According to the experiment result, the recognition rate by VQ/NN is 92.3%, by VQ/HMM using fuzzy is 93.8% and by VQ/NN using fuzzy is 95.7%. Therefore, it is shown that recognition rate of speech recognition by fuzzy VQ/NN is better than those of fuzzy VQ/HMM and conventional VQ/HMM because of its excellent learning ability.

  • PDF

The Study of Korean Speech Recognition for Various Continue HMM (다양한 연속밀도 함수를 갖는 HMM에 대한 우리말 음성인식에 관한 연구)

  • Woo, In-Sung;Shin, Chwa-Cheul;Kang, Heung-Soon;Kim, Suk-Dong
    • Journal of IKEEE
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • This paper is a study on continuous speech recognition in the Korean language using HMM-based models with continuous density functions. Here, we propose the most efficient method of continuous speech recognition for the Korean language under the condition of a continuous HMM model with 2 to 44 density functions. Two voice models were used CI-Model that uses 36 uni-phones and CD-Model that uses 3,000 tri-phones. Language model was based on N-gram. Using these models, 500 sentences and 6,486 words under speaker-independent condition were processed. In the case of the CI-Model, the maximum word recognition rate was 94.4% and sentence recognition rate was 64.6%. For the CD-Model, word recognition rate was 98.2% and sentence recognition rate was 73.6%. The recognition rate of CD-Model we obtained was stable.

  • PDF

An Emotion Recognition Technique using Speech Signals (음성신호를 이용한 감정인식)

  • Jung, Byung-Wook;Cheun, Seung-Pyo;Kim, Youn-Tae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.494-500
    • /
    • 2008
  • In the field of development of human interface technology, the interactions between human and machine are important. The research on emotion recognition helps these interactions. This paper presents an algorithm for emotion recognition based on personalized speech signals. The proposed approach is trying to extract the characteristic of speech signal for emotion recognition using PLP (perceptual linear prediction) analysis. The PLP analysis technique was originally designed to suppress speaker dependent components in features used for automatic speech recognition, but later experiments demonstrated the efficiency of their use for speaker recognition tasks. So this paper proposed an algorithm that can easily evaluate the personal emotion from speech signals in real time using personalized emotion patterns that are made by PLP analysis. The experimental results show that the maximum recognition rate for the speaker dependant system is above 90%, whereas the average recognition rate is 75%. The proposed system has a simple structure and but efficient to be used in real time.

Difference State Number of CHMM Model to Improve the Performance of SCCRS (한국어 음성/문자 공용인식기의 성능향상을 위한 가변 상태수 CHMM모델의 구성)

  • Suk Soo-Young;Kim Min-Jung;Kim Kwang-Soo;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.95-98
    • /
    • 2002
  • 문자인식 또는 음성인식을 위해 사용되어지는 CHMM(Continuous Hidden Markov Model)모델은 일반적으로 모델의 상태수를 일정한 수로 고정하는 고정 상태수 모델 구조를 가지고 있으나, 이는 개별적인 인식 단위의 특성을 고려하지 않은 경우로써 이를 고려한 가변 상태수 모델을 사용할 경우 인식률 향상을 기대할 수 있다. 개별적인 인식 단위에 적합한 모델 상태수를 결정하는 방법으로 파라미터 히스토그램 방법과, BIC(Bayesian Information Criterion)방법을 사용하는 것이 대표적이다. 이들 방법들은 개별적인 인식단위의 우도값만을 향상시키기 위한 방법으로 전체인식률과 직접적으로 비례하지는 않는다. 따라서, 본 논문에서는 고정 상태수를 갖는 모델 적용 방법과 인식단위별 상태수 변화에 따른 인식률을 비교하였으며, 이를 바탕으로 각 모델별 상태수를 달리하는 가변 상태수 CHMM모델 구성 방법을 제안한다. 제안된 가변상태수 모델의 유효성을 확인하기 위해 음성/문자 공용인식기 중 필기체 문자 인식에 적용한 결과 제안한 LM(Local Maximum)으로 구성된 가변 상태수 모델이 MLE와 BIC로 구성된 모델과 인식률 면에서는 거의 동일한 성능을 유지하면서 전체 상태수는 MLE 모델에 비해 $31\%$, BIC로 구성된 모델에 비해 $22\%$ 감소를 나타내어 제안한 모델의 유효성을 확인할 수 있었다.

  • PDF

The design of Speech Recognizer to Implement the Voice Command on the PDA (PDA 상에서 음성명령어를 구현하기 위한 음성인식기의 설계)

  • Kwak Sang-Hun;Kim Cheol;Choi Seung-Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.37-40
    • /
    • 2001
  • 본 논문에서는 PDA상에서 음성으로 명령어를 제어하기 위해 Window CE 3.0 환경에서 음성인식기를 설계하였다. 전처리과정에서 26차 특징파라미터를 추출하고, HTK를 통해 학습하였다. 트라이폰 기반의 가변어휘 음성인식기를 설계하였으며, PDA의 응용프로그램은 Embedded Visual C++언어를 사용하여 22개의 음성명령어를 제어하도록 하였다. 그 결과 PDA상에서 $92\%의 인식률이 나타났으며 이것은 음성인식이 모바일 환경에서도 접근이 가능함을 알 수 있었다.

  • PDF

Performance Improvement in Distant-Talking Speech Recognition by an Integration of N-best results using Naive Bayesian Network (다채널 마이크 환경에서 Naive Bayesian Network의 Decision에 의한 음성인식 성능향상)

  • Ji, Mi-kyong;Kim, Hoi-Rin
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • 원거리 음성인식에서 인식률의 성능향상을 위해 필수적인 다채널 마이크 환경에서 방 안의 도처에 분산되어있는 원거리 마이크를 사용하여 TV, 조명 등의 주변 환경을 음성으로 제어하고자 한다. 이를 위해 각 채널의 인식결과를 통합하여 최적의 결과를 얻고자 채널의N-best 결과와 N-best 결과에 포함된 hypothesis의 frame-normalized likelihood 값을 사용하여 Bayesian network을 훈련하고 인식결과를 통합하여 최선의 결과를 decision 하는데 사용함으로써 원거리 음성인식의 성능을 향상시키고 또한 hands-free 응용을 현실화하기위한 방향을 제시한다.

  • PDF

The Recognition of Korean Syllables using Parameter Based on Principal Component Analysis (PCA 기반 파라메타를 이용한 숫자음 인식)

  • 박경훈;표창수;김창근;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.181-184
    • /
    • 2000
  • The new method of feature extraction is proposed, considering the statistic feature of human voice, unlike the conventional methods of voice extraction. PCA(principal Component Analysis) is applied to this new method. PCA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. Then the new method is applied to real voice recognition to assess performance. When results of the number recognition in this paper and the conventional Mel-Cepstrum of voice feature parameter are compared, there is 0.5% difference of recognition rate. Better recognition rate is expected than word or sentence recognition in that less convergence time than the conventional method in extracting voice feature. Also, better recognition tate is expected when the optimum vector is used by statistic feature of data.

  • PDF

Voice Driven Sound Sketch for Animation Authoring Tools (애니메이션 저작도구를 위한 음성 기반 음향 스케치)

  • Kwon, Soon-Il
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Authoring tools for sketching the motion of characters to be animated have been studied. However the natural interface for sound editing has not been sufficiently studied. In this paper, I present a novel method that sound sample is selected by speaking sound-imitation words(onomatopoeia). Experiment with the method based on statistical models, which is generally used for pattern recognition, showed up to 97% in the accuracy of recognition. In addition, to address the difficulty of data collection for newly enrolled sound samples, the GLR Test based on only one sample of each sound-imitation word showed almost the same accuracy as the previous method.

Keyword Spotting Algorithm within a Continuous Syllable Sentence for the Post-Processing of Speech Recognition (음성 인식 후처리를 위한 연속 음절 문장의 키워드 추출 알고리즘)

  • Cho, Shi-Won;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.170-171
    • /
    • 2008
  • 연속적인 음성 인식 결과는 띄어쓰기를 하지 않은 연속 음절 문장들로 이루어져 있다. 본 논문은 음성 인식 후처리 단계에서 연속 음절 문장을 조사/어미 사전을 이용한 어절 생성 과정과 형태소 분석기를 이용하여 어절을 생성한 후 키워드를 추출한다. 실험 결과, 어절 생성기만 적용한 방식보다 제안된 알고리즘의 인식률이 향상되는 것을 확인하였다.

  • PDF