• 제목/요약/키워드: 음극환원

Search Result 105, Processing Time 0.026 seconds

적층형 압전변압기

  • 박창화;한득영
    • 전기의세계
    • /
    • v.33 no.10
    • /
    • pp.625-630
    • /
    • 1984
  • 압전변압기는 압전효과를 응용한 점화소자와 필터의 중간적인 존재로서 그 두 기능을 합친 것과 같은 특성을 가지며, 전기적 에너지가 기계적 에너지로 변환된 후 다시 전기적 에너지로 환원되는 과정을 통하여 고전압을 얻는 변압기이다. 이러한 변압기는 자속을 응용하는 일반적인 변압기와는 달리, 유전체인 압전세라믹소자의 압전현상과 공진현상을 응용하므로 주파수대역이 좁고 취급되는 전류가 적다는 단점이 있으나, 구조가 간단하고, 제작이 용이하며, 소형이고, 손실이 적은 장점들이 있어서 특히 고전압고전류원을 필요로하는 음극선관, 음이온발생기, 집진기, 전자복사기, 도장기 등에 이용되고 있으며, 최근에는 다른 분야에도 응용이 시도되고 있다. 여기서는 기존의 압전변압기 중에서 가장 많이 쓰이고 있는 Rosen형(또는 transverse형)압전변압기의 구조와 특성들을 간단히 기술하고, 새로운 형태인 적층형 압전변압기에 관하여 소개하고자 한다.

  • PDF

Correlation between the Microstructure and the Electrical Conductivity of SOFC Anode, Ni-YSZ : II. Temporal Variation (SOFC 음극용 Ni-YSZ 복합체의 미세구조와 전기적 물성간의 상관관계: II. 경시변화)

  • Moon, Hwan;Lee, Hae-Weon;Lee, Jong-Ho;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1140-1145
    • /
    • 2000
  • Ni의 함량이 서로 다른 Ni-YSZ 복합체를 100$0^{\circ}C$ 환원 분위기 하에서 열처리하며 시간에 따른 미세구조의 변화를 관찰하였다. Quantitative microscopy 이론을 응용한 화상분석 결과 Ni-YSZ 복합체의 미세구조는 열처리시 나타나는 Ni상의 미세구조 변화에 가장 큰 영향을 받고 있었다. 특히 Ni의 양이 많은 조성에서는 Ni 상간의 접촉이 많아 고상반응에 의한 미세구조의 변화가 심하였는데 이로 인해 복합체 미세구조의 안정화가 느리게 진행되었다. Ni-YSZ 복합체의 전기 전도도 역시 Ni상의 미세구조 변화에 큰 영향을 받았는데 복합체 전체 미세구조의 경시변화와는 달리 Ni상의 많은 조성보다는 Ni상의 percolation이 일어나는 조성 부근에서 더 큰 영향을 받았다. 이로 인해 Ni-YSZ의 전기 전도도는 Ni의 percolation threshold 부근 조성에서 안정화되는데 더 많은 시간을 요하였다.

  • PDF

Analysis of Arsenic(III) by the Cathodic Stripping Voltammetry (음극 벗김 전류법을 이용한 비소(III) 분석에 관한 연구)

  • Yun, Young Ja;Lee, Hyung Sook;Ko, Weon Bae;Kim, Chung Hee
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.417-423
    • /
    • 1992
  • The effects of metal ions on the arsenic(III) stripping peak were examined by the cathodic stripping voltammetry. The reduction stripping peak potential and current of arsenic(III) value were -0.79V(vs. Ag/AgCl). $0.86{\mu}A$ by using 0.1N-hydrochloric acid solution. When 10 times of Cu(II) was added to the solution, the reduction stripping peak potential of arsenic(III) was the value of -0.84V(vs. Ag/Cl), which showed a good agreement with theoretical value -0.84V(vs. Ag/Cl) by using 0.1N hydrochloric acid solution. Lead(II) and copper(II) increased the stripping peak heigh of arsenic(III), Among them, the copper(II) extremely enhanced it.

  • PDF

A Study on Si-wafer Cleaning by Electrolyzed Water (전리수를 이용한 실리콘 웨이퍼 세정)

  • Yun, Hyo-Seop;Ryu, Geun-Geol
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-257
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning, high temperature process which consumes vast chemicals and ultra Pure water(UPW). This technology gives rise to the many environmental issues, therefore some alternatives have been studied. In this study, intentionally contaminated Si wafers were cleaned using the electrolyzed water(EW). The EW was generated by an electrolysis equipment which was composed of anode. cathode, and toddle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case $NH_4$Cl electrolyte, the oxidation-reduction potential(ORP) and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.7, and -750mV and 9.8, respectively. For cleaning metallic impurities, AW was confirmed to be more effective than that of CW, and the particle distribution after various particle removal processes was shown to be same distribution.

  • PDF

Relationship between Concentration and Performance of Supporting Electrolyte of Redox Flow Battery Using Polyoxometalate (Polyoxometalate를 이용한 레독스 흐름전지의 지지 전해질 농도와 성능의 관계)

  • Yong Jin Cho;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.175-179
    • /
    • 2023
  • Herein we present a tested aqueous based redox flow battery (RFB) that employs phosphomolybdic acid and ferrocyanide as the negative and positive active species in an aqueous sodium hydroxide solution. The different concentrations of NaOH solution, such as 1.0, 1.2, 1.4, 1.5, and 1.6 M, were prepared for checking the electrochemical properties and stability. The NaOH concentration as a supporting electrolyte in the negative species appears to play an important role in the electrochemical properties of phosphomolybdic acid. Moreover, the optimum value of the concentration is necessary for the best performance. The resistance of the electrolyte decreased with increasing the concentration up to 1.5 M and then increased to 1.6 M. Hence, the decrease in electrolyte resistance appears to greatly influence the energy efficiency, which is improved by increasing the concentration of NaOH. In addition, the 1.5 M NaOH solution appears to be the concentration required for optimum performance.

Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode (미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구)

  • Jin, Dahee;Park, Joonam;Dzakpasu, Cyril Bubu;Yoon, Byeolhee;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • Lithium metal anode with the highest theoretical capacity to replace graphite anodes are being reviewed. However, the dendrite growth during repeated oxidation/reduction reaction on lithium metal surface, which results in poor cycle performance and safety issue has hindered its successful implementation. In our previous work, we solved this problem by using surface modification technique whereby a surface pattern on lithium metal anode is introduced. Although the micro-patterned Lithium metal electrode is beneficial to control Li metal deposition efficiently, it is difficult to control the mossy-like Li granulation at high current density ($>2.0mA\;cm^{-2}$). In this study, we introduce vinylene carbonate (VC) electrolyte additive on micro patterned lithium metal anode to suppress the lithium dendrite growth. Owing to the synergetic effect of micro-patterned lithium metal anode and VC electrolyte additive, lithium dendrite at a high current density is dense. As a result, we confirmed that the cycle performance was further improved about 6 times as compared with the reference electrode.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts (CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.99-104
    • /
    • 2024
  • In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.