This paper proposes the method to select the number of optimal mixtures in each state in Continuous Density HMM (Hidden Markov Models), Previously, researchers used the same number of mixture components in each state of HMM regardless spectral characteristic of speaker, To model each speaker as accurately as possible, we propose to use a different number of mixture components for each state, Selection of mixture components considered the probability value of mixture by each state that affects much parameter estimation of continuous density HMM, Also, we use PCA (principal component analysis) to reduce the correlation and obtain the system' stability when it is reduced the number of mixture components, We experiment it when the proposed method used average 10% small mixture components than the conventional HMM, When experiment result is only applied selection of mixture components, the proposed method could get the similar performance, When we used principal component analysis, the feature vector of the 16 order could get the performance decrease of average 0,35% and the 25 order performance improvement of average 0.65%.
Kim, Jeong-Hyun;Park, Seong-Bae;Lee, Sang-Jo;Park, Se-Young
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.2
/
pp.243-250
/
2008
This paper proposes a system which extracts necessary information from call-for-paper (CFP) documents using a hidden Markov model (HMM). Even though a CFP does not follow a strict form, there is, in general, a relatively-fixed sequence of information within most CFPs. Therefore, a hiden Markov model is adopted to analyze CFPs which has an advantage of processing consecutive data. However, when CFPs are intuitively modeled with a hidden Markov model, a problem arises that the boundaries of the information are not recognized accurately. In order to solve this problem, this paper proposes a two-phrase hidden Markov model. In the first step, the P-HMM (Phrase hidden Markov model) which models a document with phrases recognizes CFP documents locally. Then, the D-HMM (Document hidden Markov model) grasps the overall structure and information flow of the document. The experiments over 400 CFP documents grathered on Web result in 0.49 of F-score. This performance implies 0.15 of F-measure improvement over the HMM which is intuitively modeled.
We propose a new speech enhancement algorithm based on left-right Hidden Markov Model (HMM) with state decision using Log-likelihood Ratio Test (LRT). Since the conventional HMM-based speech enhancement methods try to improve speech quality for all states, they introduce huge computational loads inappropriate to real-time implementation. In the left-right HMM, only the current and the next state are considered for a possible state transition so to reduce the computational complexity. In this paper, we propose a method to decide the current state by using the LRT on the previous state. Experimental results show that the proposed method improves the speed up to 60% with 0.2∼0.4 dB degradation of speech quality compared to the conventional method.
Pattern matching and pattern searching in time series data have been active issues in a number of disciplines. This paper suggests a novel pattern matching technology which can be used in the field of stock market analysis as well as in forecasting stock market trend. First, we define conceptual patterns, and extract data forming each pattern from given time series, and then generate learning model using Hidden Markov Model. The results show that the context-based pattern matching makes the matching more accountable and the method would be effectively used in real world applications. This is because the pattern for new data sequence carries not only the matching itself but also a given context in which the data implies.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.4
/
pp.31-37
/
2004
Wavelet transform is a useful tool for analysis and process of image. This showed good performance in image compression and noise reduction. Wavelet coefficients can be effectively modeled by hidden Markov tree(HMT) model. However, in application of HMT model to image interpolation, training procedure is needed. Moreover, the parameters obtained from training procedure do not match input image well. In this paper, the structure of HMT is used for image interpolation, and the parameters of HMT are obtained from statistical characteristics across wavelet subbands without training procedure. In the proposed method, wavelet coefficient is modeled as Gaussian mixture model(GMM). In GMM, state transition probabilities are determined from statistical transition characteristic of coefficient across subbands, and the variance of each state is estimated using the property of exponential decay of wavelet coefficient. In simulation, the proposed method shows improvement of performance compared with conventional bicubic method and the method using HMT model with training.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.1139-1142
/
2008
인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.
KIPS Transactions on Software and Data Engineering
/
v.2
no.10
/
pp.723-730
/
2013
This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.477-479
/
2011
본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.8A
/
pp.786-795
/
2002
In this paper, we present a histogram and moment-based vidoe scencd change detection technique using hierarchical Hidden Markov Models(HMMs). The proposed method extracts histograms from a low-frequency subband and moments of edge components from high-frequency subbands of wavelet transformed images. Then each HMM is trained by using histogram difference and directional moment difference, respectively, extracted from manually labeled video. The video segmentation process consists of two steps. A histogram-based HMM is first used to segment the input video sequence into three categories: shot, cut, gradual scene changes. In the second stage, a moment-based HMM is used to further segment the gradual changes into a fade and a dissolve. The experimental results show that the proposed technique is more effective in partitioning video frames than the previous threshold-based methods.
Journal of the Korea Society of Computer and Information
/
v.14
no.5
/
pp.19-28
/
2009
Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.