• Title/Summary/Keyword: 융해 저항성

Search Result 205, Processing Time 0.025 seconds

An Experimental Study on Freezing and Thawing Resistance of Rice Straw Ash Concrete (볏짚재 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.66-72
    • /
    • 1999
  • The purpose of this experiment is to estimate freezing and thawing resistance of rice straw ash concrete. Test results show that mass, pulse velocity and relative synamic modulus of elasticity are gradually decreased with increase of freezing and thawing cycle. The durability factor(DF) is in the range of 85.48 ∼86.33 in the rice straw ash comcrete with 2.5% , 5% 7.5%, rice straw ash and higher than that of thenormal cement concrete. But, DF of 10% , 12.5%, 15% rice straw ash filled rice straw ash concrete is in the range of 41.26∼65.34 and lower than that of the normal cement concrete.

  • PDF

An Experimental Study on the Freeze-Thaw Resistance of High-Strength Light Weight Aggregate Concrete (고강도 경량골재콘크리트의 동결융해 저항성에 대한 실험적 연구)

  • 한상묵;최세규;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.125-132
    • /
    • 1998
  • 경량골재 콘크리트의 내구성과 경제성에 대한 인식 부족으로 조경재료나 인공토양 둥 구조부재 이외의 분야에 사용되고 있는 국내 실정에 비해서, 구미 여러나라에서는 고강도 경량골재를 장지간 교량과 고충건물에 사용하고 있다. 경량골재 콘크리트는 구조물의 재료비 단순비교에 있어서도 경제성이 있을 뿐만 아니라, 자중감소로 인한 구조적, 기하학적 장점도 있으며, 또한 고강도 경량골재의 개발로 경량골재가 가지고 있는 여러 문제점을 해소하여 사용성과 내구성에 있어서 보통골재 콘크리트와 큰 차이가 없는 상황이다. 그러나국내에서 생산된 경량골재는 닫힌 공극보다 열린 공극을 많이 내포하고 있어 수분흡수가 많고, 특히, 동결융해에 대한 내구성에 취약한 문제점을 가지고 있다. 본 논문에서는 내동해성 향상을 위해 10종류의 고강도 경량골재 콘크리트 공시체를 제작하여 실리카 흄, 물.시멘트비, AE제, 강섬유 등을 실험 변수로 하여동결융해 실험을 수행하였다. 연구결과 실리카흄, 물.시멘트 비는 어느 정도 내동해성을 향상시키지만 근본적인 해결방안이 되지 못하며, AE제를 첨가한 공시체와 강섬유를 사용한 공시체는 동결융해 내구성 지수가 90%이상으로 측정되어 내동해성을 개선시킬 수 있는 요소로 나타났다.

Freeze and Thaw Durability of Concrete Using Recycled Aggregates (재생골재를 사용한 콘크리트의 동결융해 저항성)

  • 문대중;팽우선;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.307-314
    • /
    • 2002
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituting for insufficient natural aggregate, saving resources and protecting environment. There, however, are some Problems not only the large difference of dualities in recycled aggregates but also a little deterioration of mechanical properties in recycled aggregate concrete in comparison with that of natural aggregate concrete. In this study, the test results of freez and thaw durability of concrete with demolished-concrete recycled aggregate(DRA) arc as follows. Improvement of crushing process is an important assignment because that adhered mortar on source-concrete recycled aggregate(SRA) and DRA highly affects thc qualifies of recycled aggregate. The compressive strength of recycled aggregate concrete was not highly different in comparison with that of control concrete. But the resistance to penetration of Cl in recycled aggregate concrete was shown smaller than that of control concrete because of adhered mortar on recycled aggregate. The resistance to frcezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA-SRA and DRA was more decreased than that of control concrete. On the other hand, durability factor of concrete with AA-SRA was larger than that of control concrete. It, therefore, is necessarily required that recycled aggregate including adequate entrained air should be used for satisfying the freez and thaw durability of recycled aggregate concrete.

Dissolution Resistance Property of Modified Asphalt Waterproofing Sheet Coated with Polyamide Film by SEM-EDX Analysis (폴리아마이드 필름이 코팅된 개량 아스팔트 방수시트의 SEM-EDX 분석을 통한 유기용제 저항성 확인)

  • An, Ki-Won;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.437-444
    • /
    • 2017
  • In the composite waterproofing method in which a polyurethane coating waterproofing material is applied on the modified asphalt waterproofing sheet, the organic solvent is diluted in the coating waterproofing material in order to improve the workability. However, since the organic solvent is not volatilized before the curing of the polyurethane coating waterproofing material, the organic solvent causes dissolution of asphalt layer, thereby causing oil leakage. As a result, a polyamide film having a high dissolution resistance property was laminated on modified asphalt sheet, and through testing the dissolution resistance was visually confirmed and quantitative analysis of the polyamide film by SEM-EDX analysis was also used to confirmed the dissolution resistance of the polyamide film.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.

Acid Corrosion Resistance and Durability of Alkali-Activated Fly Ash Cement-Concrete (알칼리활성 플라이 애쉬 시멘트-콘크리트의 산저항성 및 내구성)

  • Kang, Hwa-Young;Park, Sang-Sook;Han, Sang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • A new cementitious material has been developed, called alkali-activated fly ash cement(AAFC), which is used to produce AAFC-concrete for construction. The effect of acid attack, sodium chloride solution, carbonation, freeze-thaw cycling, and SEM, XRD analysis of the AAFC-concrete prepared using alkali-activated fly ash cement and OPC-concrete were experimentally investigated. It was found that the acid resistance of AAFC-concrete(35 MPa) prepared from alkali-activated fly ash at 85$^{\circ}C$ for 24 hrs is far better than OPC-concrete(35 MPa). Also, the AAFC-concrete(35 MPa) had a similar resistance of OPC-concrete(35 MPa) to attack, such as sodium chloride solution, carbonation and freeze-thaw cycling.

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

Durability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 내구특성)

  • Yun, Kyong-Ku;Jung, Won-Kyong;Choi, Sang-Reung;Kim, Dong-Ho;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.1-8
    • /
    • 2002
  • Latex modified concrete(LMC) became to be applied as a new material for newly constructed bridge deck overlays in Korea due to its excellent bond strength, flexural strength and impermeability against water and chloride. However, it could not be adopted at repair job site because of its long curing time required. Thus, a research on latex modified concrete with rapid-setting cement(RSLMC) is necessary if it could develope the sufficient strength for early opening to traffic. This study focused on the durability of latex modified concrete with rapid-setting cement mainly on water permeable resistance and freeze-thaw resistance. The main experimental variables were latex contents(0, 5, 10, 15 and 20%) and antifoamer contents (0, 1.6, 3.2, 4.8 and 6.4%). Test results show that the permeability of RSLMC is very low indicating below 100 coulombs at 15% of latex contents at all antifoamer contents. The freeze-thaw resistance of RSLMC maintains above 90% of relative dynamic modulus at 3.2% of antifoamer content until 300 freezing-thawing cycles.

  • PDF

Freezing and Thawing Resistance and fundamental Properties of Antiwashout Underwater Concrete Containing Mineral Admixtures (광물질혼화재 혼합 수중불분리성 콘크리트의 물성 및 동결융해 저항성)

  • Moon HanYoung;Shin Kook-Jae;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.455-464
    • /
    • 2005
  • Today the application of antiwashout underwater concrete to the construction sites is increasing steadily, while its reliability is in issue. Particularly, antiwashout underwater concrete is known to have very weak durability on frost attack, and hence Japan society of civil engineers(JSCE) regulated that not to use of antiwashout underwater concrete where the freezing and thawing is suspected. This study aims the improvement of the freezing and thawing resistance for antiwashout underwater concrete. From the results of fundamental test, FA20 and SG50 showed good performance in fluidity and long term compressive strength than control concrete. Meanwhile, MK10 marked the highest compressive strength through the whole curing age but a defect on fluidity was discovered. The results from the repeated freezing and thawing test show that the large volumes of air entrapped by cellulose based antiwashout underwater admixture gave bad effects to frost durability and hence not much benefits were confirmed from the use of mineral admixtures. However there were some increasing effects on frost durability of MK10 and SG50 by securing $6{\pm}0.5\%$ of entraining air. In the meantime, there was a increasing tendency of frost durability by increasing blame's fineness of ground granulated blast furnace slag.

Resistance to Freezing and Thawing of Alkali-Activated Slag Concrete (알카리활성 슬래그 콘크리트의 동결융해 저항성)

  • Mun, Jae-Sung;Cho, Ah-Ram;Sim, Jae-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.105-106
    • /
    • 2011
  • The present tests examined the resistance to freezing and thawing of alkail-activated (AA) slag concrete having compressive strength between 30~56 MPa. To enhance the compressive strength and resistance to freezing and thawing of AA slag concrete, Na ions were used for an activator. Test results revealed that the resistance to freezing and thawing of AA slag concrete is comparable to that of cement concrete when compressive strength is more than 50 MPa.

  • PDF