• Title/Summary/Keyword: 육각형 블록

Search Result 9, Processing Time 0.023 seconds

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames (육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가)

  • Chang, Kug Kwan;Seo, Dae Won;Ko, Tae Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.116-124
    • /
    • 2011
  • RC frames with unreinforced masonry infiledl walls are common in worldwide. Since infilled walls are normally considered as non-structural elements, their presence is often ignored by engineers. In this study, to improve the seismic performance of masonry walls, hexagonal block was developed and the influence of masonry infilled wall on the seismic performance of reinforced concrete(RC) frames that were designed in accordance with current code provisions without the consideration of earthquake loadings are investigated. Two 1/2 scale, single story, single bay, frame specimens were tested. The parameters investigated included that the strength of infilled wallls with respect to that of the lateral load history. The experimental results indicate that infilled walls can significantly improve the lateral stiffness and strength of RC frames. The lateral loads developed by the infilled frame specimen is higher than that of the bare frame. It also indicates that infilled walls can be potentially used to improve the performance of existing nonductile frames. For this purpose. methods should be developed to avoid irreparable damage and catastrophic failure.

An Adaptive Hexagon Based Search for Fast Motion Estimation (고속 움직임 추정을 위한 적응형 육각 탐색 방법)

  • 전병태;김병천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.828-835
    • /
    • 2004
  • An adaptive hexagon based search(AHBS) algorithm is proposed in this paper to perform block motion estimation in video coding. The AHBS evaluates the value of a given objective function starting from a diamond-shaped checking block and then continues its process using two hexagon-shaped checking blocks until the minimum value is found at the center of checking blocks. Also, the determination of which checking block is used depends on the position of minimum value occurred in previous searching step. The AHBS is compared with other fast searching algorithms including full search(FS). Experimental results show that the proposed algorithm provides competitive performance with slightly reduced computational complexity.

Experiments for Hydraulic Stability of Levee Revetment Block (호안블록의 수리적 안정성 실험)

  • Lee, Min-Ho;Choi, Hung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1018-1022
    • /
    • 2007
  • 본 연구는 친수공간 확보에 따른 경관호안 블록의 개발과 홍수시 수리적 안정성을 가져올 수 있는 블록의 규격은 물론 블록의 형상에 따른 상호 맞물림과 블록간의 고정 등 수리적으로 안정성을 제공해 주는지를 수리모형실험을 통해서 분석하였다. 바닥 사석공에서는 아무런 맞물림이 없는 상태에서보다는 맞물림을 주었을 경우가 안정성이 크게 나왔고 그 맞물림의 량이 많은 조건으로 실험한 육각형 다이아몬드블록의 결과가 안정성이 더 크게 나왔다. 사석의 경사시공에서는 횡적구속만 주었을 경우보다는 종·횡적구속을 주었을 경우가 안정성이 크게 나와 두방향의 구속이 필요함을 보여주었다. 이러한 실험결과는 블록의 크기, 형상 및 맞물림에 따른 유속, 수심, Froude수, Shields수, 바닥전단응력, 입자 Reynolds수의 분석을 통해 얻었다.

  • PDF

Motion Vector Prediction Algorithm for Enhanced Hexagonal Search (육각형 검색 패턴을 위한 효과적인 움직임 벡터 예측 알고리즘)

  • Lee, Do-Kyung;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.602-605
    • /
    • 2011
  • 자연현상이나 실제 상황을 담고 있는 비디오 시퀀스는 기본적으로 주위의 픽셀들과 높은 상관도를 가지고 있다. 따라서 움직임 벡터 정보도 주위 블록의 정보와 상관도가 높으며, 움직임 예측을 수행할 때의 계산 량을 줄이는데 용이하게 사용되어져 왔다. 본 논문에서도 이를 이용하여 움직임 벡터를 예측하는 방법을 제시한다. 현재 블록의 정확한 움직임 벡터 예측을 위하여, 참조 프레임의 움직임 벡터와 현재 프레임의 움직임 벡터 정보를 참조하여 시작점을 정확하게 재조정하였다. 더 정확해진 시작점 예측으로 인해 움직임 정보의 중앙으로 수렴하는 확률이 더 높아 졌으며, 이를 이용하여 enhanced hexagonal search의 첫 단계를 수정함으로써 search point를 줄였다. 실험결과에서는 제안한 알고리즘의 장점과 단점을 분석하고 각 테스트 시퀀스에 따른 성능을 비교하였다.

  • PDF

Efficient Integer pixel Motion Estimation on H.264/AVC (H.264/AVC에서 효율적인 정화소 움직임 추정)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.390-393
    • /
    • 2012
  • H.264/AVC에서 움직임 추정에 소요되는 시간을 줄이면서 보다 나은 화질을 유지하기 위하여 본 논문에서는 정화소 움직임 추정 기법을 제안하였다. 본 논문에서는 정화소 움직임 추정을 위하여 대칭적인 탐색패턴을 이용한 계층적인 탐색 기법을 사용하였다. 제안한 정화소 움직임 추정 탐색 기법은 십자가 탐색 패턴, 다중 사각형 탐색 패턴, 작은 사각형 탐색 패턴, 다이아몬드 탐색 패턴들로 이루어져 있다. 제안한 움직임 추정 탐색 기법에서 사용한 탐색 패턴들은 블록 움직임이 수직으로 크거나 블록 움직임이 크면서 규칙적인 영상에서 국부적 최소화 문제를 해결하고 움직임 추정에 소요되는 시간을 줄이기 위하여 탐색 영역 내에 탐색 점들을 규칙적, 대칭적으로 배치하였다. 제안한 기법의 성능을 전역 탐색 기법의 성능과 비교하였을 때 움직임 추정에 소요되는 시간에 있어서 약 4~5.5 배의 속도 향상을 가져왔으며, 영상 화질에 있어서 전역 탐색 기법의 화질과 같거나 약간의 화질 저화를 보였다. 반면에, 비대칭 다중 육각형 탐색 기법의 성능과 비교하였을 때 움직임 추정 속도면에 있어서 약간의 성능 향상과 화질에 있어서 비슷하거나 최대 0.05 (dB)정도 향상을 보였다.

Efficient Integer pel and Fractional pel Motion Estimation on H.264/AVC (H.264/AVC에서 효율적인 정화소.부화소 움직임 추정)

  • Yoon, Hyo-Sun;Kim, Hye-Suk;Jung, Mi-Gyoung;Kim, Mi-Young;Cho, Young-Joo;Kim, Gi-Hong;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.123-130
    • /
    • 2009
  • Motion estimation (ME) plays an important role in digital video compression. But it limits the performance of image quality and encoding speed and is computational demanding part of the encoder. To reduce computational time and maintain the image quality, integer pel and fractional pel ME methods are proposed in this paper. The proposed method for integer pel ME uses a hierarchical search strategy. This strategy method consists of symmetrical cross-X pattern, multi square grid pattern, diamond patterns. These search patterns places search points symmetrically and evenly that can cover the overall search area not to fall into the local minimum and to reduce the computational time. The proposed method for fractional pel uses full search pattern, center biased fractional pel search pattern and the proposed search pattern. According to block sizes, the proposed method for fractional pel decides the search pattern adaptively. Experiment results show that the speedup improvement of the proposed method over Unsymmetrical cross Multi Hexagon grid Search (UMHexagonS) and Full Search (FS) can be up to around $1.2{\sim}5.2$ times faster. Compared to image quality of FS, the proposed method shows an average PSNR drop of 0.01 dB while showing an average PSNR gain of 0.02 dB in comparison to that of UMHexagonS.

Motion Compensation by Affine Transform using Polygonal Matching Algorithm (다각형 정합 알고리듬을 이용한 affine 변환 움직임 보상)

  • Park, Hyo-Seok;Hwang, Chan-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.60-69
    • /
    • 1999
  • Motion compensation by affine transform has been proposed as a solution to the artifact problems in very low bit rate video coding and a HMA(Hexagoanl Matching Algorithm) has been proposed for refine motions estimation. When dividing images with an affine transform, as image objects do not necessarily conform to triangle patterns. In this paper we propose a method that first divides an image into triangular patches according to its edge information and then further divides the image into more detailed triangular patches where more complicated edge information occurs. We image propose a PMA(Polygona Matching Algorithm) for refine motion estimation because of the different triangle pattern types of neighboring blocks and its performance is compared with H.263.

  • PDF

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.