• Title/Summary/Keyword: 유효 강성

Search Result 300, Processing Time 0.022 seconds

Anti-oxidant and Anti-skin-aging Effects of Abalone Viscera Extracts in Human Dermal Fibroblasts (전복내장추출물의 항산화 및 human dermal fibroblasts에 대한 항피부노화 효과)

  • Li, Jinglei;Tong, Tao;Ko, Du-Ock;Chung, Dong-Ok;Jeong, Won-Chul;Kim, Ji-Eun;Kang, Seong-Gook
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.463-469
    • /
    • 2012
  • In this study, the anti-oxidant and anti-elastase activities of four abalone viscera extracts were investigated to screen the most promising extract. This extract was further studied in terms of its anti-skin-aging properties. In the DPPH-scavenging assay, the Tris-HCl extract showed a $58.60{\pm}0.88%$ radical-scavenging activity, which was followed closely by the ethanol extract that had a $55.40{\pm}0.62%$ scavenging activity. In the anti-elastase assay, however, the ethanol extract showed the significantly highest elastase inhibition activity. Furthermore, none of the extracts had a harmful effect on the human dermal fibroblast, as revealed in the MTT assay. In the cell study, the effect of the ethanol extract at various concentrations on the human dermal fibroblast was investigated. At the 10 ${\mu}g/mL$ concentration, the ethanol extract boosted the pro-collagen type I synthesis to $705.30{\pm}3.06$ ng/mL and reduced the MMP-1 to $54.30{\pm}0.80$ ng/mL, which was considered the optimum concentration. This is the first study that focused on the anti-oxidant and anti-skin-aging effects of abalone viscera extract. Its results may provide fundamental data for further study.

Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis (수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안)

  • Jung, Heedon;Kim, Yongseong;Lee, Moojae;Lee, Seungjoo;Tamang, Bibek;Heo, Joon;Ahn, Sungsoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the behavioral characteristics of the fill dam were analyzed during water level fluctuations through a numerical analysis model, and the reservoir safety management plan was prepared. The variation in plastic deviatoric strain, horizontal displacement, stress path, pore water pressure, etc., due to elevation of water level in the upper and lower sides of shell and core were analyzed using numerical analysis software, viz. GTS NX and LIQCA. The analysis results manifest that as the water level in the dam body increases rapidly, the pore water pressure and displacement also increase quickly. It was found that the elevation of the water level causes an increase in pore water pressure in the dam body as well as an increase in the saturation of the dam body and decreased effective stress. It is considered that this type of dam behavior can be the cause of the reduction of strength and stiffness of the dam. Also, it is assumed that the accumulated plastic deviatoric strain due to the deformation of the dam body caused by water infiltration causes an increase in displacement. Based on these experimental results and the results of analyses of the existing reservoir safety diagnosis techniques, an improvement plan for dam safety diagnosis and evaluation criteria was proposed, and these results can be used as primary data while revising dam safety diagnosis guidelines.

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels (1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰)

  • Jeon, Soo-Min;Ok, Chi-Yeol;Kang, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.537-546
    • /
    • 2023
  • For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.

Effect of Shading on Japanese Apricot Fruit Yield and Quality (차광이 매실의 수량 및 품질에 미치는 영향)

  • Jung Gun Cho;Sung Ku Kang;Seung Heui Kim;Sang Kun Park;Yong Bum Kwack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.84-89
    • /
    • 2024
  • Light is an important component among which plays a crucial role in determining the production and quality of fruit trees. Since the disturbance of light directly leads to reduced photosynthetic efficiency, their damage can be increased especially in fruit trees such as Japanese apricots with a short growing time. In this study, we investigated how the effects of shading condition can affect the production and quality of Japanese apricots according to increased damages by light disturbance in the main orchard complex. The average photosynthetically active radiation (PAR) level in Japanese apricots was rapidly dropped as the shading time was increased compared to the control (304 μmol/m2/s) and the PAR level decreased to 142 μmol/m2/s after shaded for eight hours. The maximum photosynthetic efficiency, with a PAR value of 900 to 1,000 μmol/m2/s, corresponds to the time period without shading and the time period with 2 hours of shading, and these times range from 11 a.m. to 3 p.m. And the time period for shading for 4 hours was from 1:00 p.m. to 2:00 p.m., and under conditions of shading for 6 and 8 hours, the effect was a low amount of light. There was no difference in the weight of Japanese apricots during 2 hours shading time, however, it was significantly reduced as shading time were increased. The difference of the acid content and L/D ratio was not significant on shading time, but the SSC was decreased as times going on. In conclusion, our results indicate that the shading for more than 2 hours make negative effects to decrease the weight and SSC and the yield and affects directly to drop in fruit quality.

Comparison of Soil Carbon Storage and Soil Respiration Among Agricultural Ecosystems Types and Their Relationship with Soil Environmental Factors (농경지 생태계 유형별 토양의 탄소 저장량과 토양호흡량 비교 및 토양환경요인과의 관계)

  • EungPill Lee;HeonMo Jeong;SungRyong Kang;Inyoung Jang
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.298-310
    • /
    • 2024
  • In this study, we analyzed the results of previous studies on different types of agricultural ecosystems to understand how environmental factors in soils, which serve as significant carbon reservoirs within agricultural ecosystems, a type of terrestrial ecosystem, affect soil carbon storage and soil respiration. As a result, most previous studies have been conducted on paddy field and facility cultivation area. And, the carbon storage in the soil and the soil's chemical properties, such as soil pH, electrical conductivity, soil organic matter content, and total nitrogen content, were higher in paddy field and orchard compared to field, facility cultivation area, and other cultivation area. The soil respiration in paddy field was also higher than in other types of agricultural ecosystems. Furthermore, soil carbon storage showed a significant correlation with soil organic matter (R2=0.7237, p=0.0000), total nitrogen (R2=0.8419, p=0.0000), and available phosphorus (R2=0.3123, p=0.0024), while soil respiration had a significant relationship with soil organic matter (R2=0.5644, p=0.0000). In this study, agricultural ecosystems were found to act as carbon sinks, with soil carbon storage measured at 49.1±8.9 tons C ha-1 in orchard, 31.8±6.9 tons C ha-1 in paddy field, and 25.3±28.0 tons C ha-1 in facility cultivation area. Therefore, agricultural ecosystems need to manage soil carbon storage and carbon emissions through proper soil nutrient management.

Validation of Launch Vibration Isolation Performance of the Passive Vibration Isolator for the Scientific Payload BioCabinet for CAS500-3 (차세대중형위성 3호 과학탑재체 바이오캐비넷용 수동형 진동절연기의 발사진동 저감성능 검증)

  • Dong-Jae Seo;Yeon-Hyeok Park;Young-Jin Lee;Ji-Seung Lee;Kyung-Hee Kim;Soon-Hee Kim;Chan-Hum Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2024
  • The payload BioCabinet of CAS500-3 is designed for 3D stem cell differentiation, culture, and analysis utilizing bio 3D printing techniques in space. The 3D printing technique was initially developed for orbital use; however, it lacks separate validation for extreme launch vibration environments, necessitating a design that mitigates the launch load on the payload. This paper proposes a passive vibration isolator with a low-stiffness elastic support structure and high damping characteristics to reduce the launch loads affecting the BioCabinet. We explore the high-damping characteristics through the superelastic effects of SMA (Shape Memory Alloys) and a multi-layered structure incorporating viscoelastic tape. The effectiveness of the proposed vibration isolation system was confirmed via launch vibration tests on a qualification model.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Development and Experimental Performance Evaluation of Steel Composite Girder by Turn Over Process (단면회전방법을 적용한 강합성 소수주거더 개발 및 실험적 성능 평가)

  • Kim, Sung Jae;Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.407-415
    • /
    • 2010
  • In Korea, more than 90% of the total number of steel bridges built for 40~70 m span length is a steel box-girder bridge type. A steel box-girder bridge is suitable for long span or curved bridges with outstanding flexural and torsional rigidity as well as good constructability and safety. However, a steel box-girder bridge is uneconomical, requiring many secondary members and workmanship such as stiffeners and ribs requiring welding attachments to flanges or webs. Therefore, in US and Japan, a plate girder bridge, which is relatively cheap and easy to construct is generally used. One type of the plate girder bridge is the two- or three-main girder plate bridge, which is a composite plate girder bridge that minimizes the number of required main girders by increasing the distance between the adjacent girders. Also, for the simplification of girder section, the stiffener which requires attachment to the web is not required. The two-main steel girder plate bridge is a representative type of plate girder bridges, which is suitable for bridges with 10 m effective width and has been developed in the early 1960s in France. To ensure greater safety of two- or three-main girder plate bridges, a larger steel section is used in the bridge domestically than in Europe or Japan. Also, the total number of two- or three-main girder plate bridge constructed in Korea is significantly less than the steel box girder bridge due to a lack of designers' familiarity with more complex design detailing of the bridge compare to that of a steel box girder bridge design. In this study, a new construction method called Turn Over method is proposed to minimize the steel section size used in a two- or three-main girder plate bridge by applying prestressing force to the member using confining concrete section's weight to reduce construction cost. Also, a full scale 20 m Turn Over girder specimen and a Turn Over girder bridge specimen were tested to evaluate constructability and structural safety of the members constructed using Turn Over process.