• Title/Summary/Keyword: 유효흡수비

Search Result 173, Processing Time 0.022 seconds

Studies on the Foliar Application of Urea as Nitrogen Source of Rice Plant Nutrition (요소엽면살포(尿素葉面撒布)에 따른 수도(水稻)의 질소영양(窒素營養)에 관(關)한 연구(硏究))

  • Cho, Seoung-Jin
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.125-147
    • /
    • 1968
  • This experiment was carried out as a part of the studies on reasonable application of nitrogen in rice plant to determine: (I) Nitrogen absorption. and rooting of rice seedlings as affected by urea foliar application at late seedling stage (II) Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice (III) Effect of foliar application of urea and its time during the stage of ear formation on yield of rice plant. Results obtained are summarized as follows. Exp.I: Nitrogen absorption and rooting of rice seedlings as affected be urea foliar application at late seedling stage. 1 : The foliar application of urea plots$(T_{1},T_2)$ snowed mare N-content than non-urea foliar application plot(T0) at lane seedling stage, being significant among treatments and foliar application of urea seemed more effective in increasing the N-content of seedlings. and promoted root settlement and early growth alter the transplanting. 2 : The carbon contents of the plants of $T_1$, and $T_2$ at late seedling stage increased than T0, and the carbon contents. of $T_1$ and $T_2$ plots became higher in amount in proportion to the nitrogen absorption as compared with those of $T_0$. 3 : C/N ratio appeared significant among soil application plots($N_1, \;N_2$) and foliar application of urea plots ($T_1$, $T_2$ and $T_0$). C/N ratio was lower in case of increased amount of nitrogen. The higher contents of nitrogen and carbon and lower C/N ratio resulted in the increment of root numbers and root lengths. Exp.II: Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice. 1 : There was a highly significant decrease in the maturing rate by severe leaf prunning. In the mean time, significant increase in maturing rate was observed with urea foliar application and it was found the more frequent application the more effective for higher maturing rate with a moderate significance. A correlationship between the level of prunning and maturing rate was enumerated to 0.961 of correlation coefficient, which indicated an increased maturing rate by the increased number of remaining leaves. 2 : The 1.000 grain weight, grain weight and hulled rice yield increased by leaf prunning in order (plot a$A_1$, $A_3$, $A_2$ and $A_0$ were 89.8%, 89.4%, 87.8% and 87.5% respectively, showing the highest of rate in $A_1$ and $A_3$ in methods of ear fertilization and being highly significant between its treatment. 3 : 1000 grain weights were highly significant between time of application, showing a tendency of increase of weights with the time lagging until days before earings as that of maturing rates. High significance was recognized between methods of ear fertilization, showing the highest in $A_2$ 23.18 gr. 4 : Yields per $3.3m^2$ were not significant between time of ear fertilization, whereas were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.486 kg, 1.491 kg, 1.381 kg and 1.328 kg, respectively, showing the highest in $A_1$ and $A_3$. 5 : Hulling ratios showed significant different between time of ear fertilization, showing the highest in $T_2$, whereas those of methods of ear fertilization were highly significant between its treatment, Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 84.72%, 84.06%, 83.29%, and 82.56% respectively, showing the highest m $A_2$ and $A_3$ among others. 6 : Yields of hulled rice per $3.3m^2$ showed significant different between time of ear fertilization, showing the highest in $T_1$ 1.192 kg. Whereas, those were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.259 kg, 1.254 kg, 1.149 kg and 1.095 kg, respectively, showing the highest in $A_1$ and $A_2$. 7 : Contents of nitrogen on rice plant increased in case of nitrogen application as ear fertilizer and showed that the case of urea foliar application was more effective than that of soil application, showing the increased nitrogen content of rice plant was accompanied by carbon content.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF