• Title/Summary/Keyword: 유효응력 해석

Search Result 329, Processing Time 0.037 seconds

A Comparative Study of the Fatigue Strength on Cruciform Joints by Local Stress Methods (십자형 용접부 피로강도 산정을 위한 국부응력법의 비교연구)

  • Yang, Park-Dal-Chi;Ahn, Jung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.573-579
    • /
    • 2010
  • The notch effects on the fatigue strength of welded joints are both stress concentration and fatigue strength reduction. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. In this paper, well-known notch stress approaches - critical distance method, area method and fictitious rounding method are presented for the fatigue strength of cruciform joints. The estimated results of the present methods are applied to the experiments performed in this study and reported in the references. The results of the application show that the fatigue-life scatterness of the experimental data expressed in the nominal stress is significantly reduced by introducing the effective fatigue stress of the present study.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (특수 적분해 경계요소법에 의한 2차원 및 3차원 동적 탄소성 응력 해석)

  • Kim, Jae-Suk;Owatsiriwong, Adisorn;Park, Kyung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

Analysis of Flexible Textile Composites with Large Shear Deformation (전단 대변형을 고려한 유연직물복합재료 해석)

  • Suh, Young-Wook;Woo, Kyeong-Sik;Kang, Wang-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.734-739
    • /
    • 2008
  • In this study, the nonlinear mechanical behavior of flexible textile composites was predicted by two-step analyses: micromechanics and mesomechanics. The effective material properties for fiber tows of flexible textile composite lamina were calculated in micromechanics, which were then used to calculate the effective tensile stress-strain curve of flexible textile composites in mesomechanics. A user defined material algorithm was developed and inserted in ABAQUS to account for the geometric non-linearity due to the large rotation and shear deformation of fiber tows in mesomechanics. It was found that the stress-strain behavior of flexible textile composites exhibited significant non-linearity. The effective tensile modulus agreed well with the test result.

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.

Nonlinear Fracture Finite Element Model of Reinforced Concrete Plates (철근콘크리트판의 비선형 파괴 유한요소 모델에 관한 연구)

  • Jin, Chi Sub;Cha, Young Soo;Eom, Jong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1988
  • A general finite element method is developed to analyze reinforced concrete plates under dead loads and monotonically increasing live loads. This method can be used to trace the load-deformation response and crack propagation through elastic, inelastic and ultimate ranges. The internal concrete and steel stresses can also be determined for any stage of the response history. A layered 8 node isoparametric element taking account of coupling effect between the membrane and the bending action is developed. An incremental tangent stiffness method is used to obtain a numerical solution. Validity of the method is studied by comparing the numerical solutions with other results.

  • PDF

Centrifuge Test and Its Numerical Modeling for Reliquefaction (재액상화에 관한 원심모형실험과 수치해석)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.89-98
    • /
    • 2006
  • In this paper the behavior of saturated sand deposits where liquefaction occurred before is studied for successive earthquakes. The relationship between past pore pressure generation and reliquefaction resistance is examined by using cyclic direct simple shear tests. If the soil sample in direct simple shear produced nearly 90% of excess pore pressure during first time loading, its liquefaction resistance increased during following cyclic loading after consolidation. However, a fully liquefied soil during first time loading has a densely packed condition but shows less liquefaction resistance for the following cyclic loading. UBCSAND model that can account for pore pressure change and stiffness loss of soil during shaking is used to analyze the centrifuge test simulating reliquefaction. The pore pressure rise during first time cyclic loading controls liquefaction resistance. The measurements from reliquefaction centrifuge test are compared with numerical predictions. By considering frequent earthquakes having occurred at the Southern Korea near Japan, such effective stress approach is necessary for reliquefaction study.

Improved Stability Design of Plane Frame Members (평면프레임 구조의 개선된 좌굴설계)

  • Kim, Moon Young;Song, Ju Young;Kyung, Yong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.225-237
    • /
    • 2006
  • Based on the study conducted by Kim et al. (205a, b), an improved stability design method for evaluating the effective buckling lengths of beam-column members is proposed herein, using system elastic/inelastic buckling analysis and second-order elastic analysis. For this purpose, the stress-strain relationship of a column is inversely formulated from the reference load-carrying capacity proposed in design codes, so as to derive the tangent modulus of a column as a function of the slenderness ratio. The tangent stiffness matrix of a beam-column element is formulated using the so-called "stability functions," and elastic/inelastic buckling analysis Effective buckling lengths are then evaluated by extending the basic concept of a single simply-supported column to the individual members as one component of a whole frame structure. Through numerical examples of several structural systems and loading conditions, the possibilities of enhancement in stability design for frame structures are addressed by comparing their numerical results obtained when the present design method is used with those obtained when conventional stability design methods are used.

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Fully Coupled Seismic Analysis of Stress-Flow According to Tunnel Drainage Type (터널 배수 형식에 따른 응력-침투 연계 내진해석)

  • Byoung-Il Choi;Myung-Ho Ha;Dong-Ha Lee;Eun-Cheol Noh;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.94-103
    • /
    • 2023
  • Built in urban ares tunnels is necessary to accurately grasp not only the above-ground environment of the tunnel but also the below-ground environment of the tunnel for design and construct. However, fully coupled analysis of stress and flow is very difficult due to the limited function of the tunnel numerical analysis program and difficulty in using program. This can lead to excessive design that increases the construction cost or occur problems that can lead to accidents during construction. In particular, in the case of an urban tunnel has a low layer soil section above the tunnel and the groundwater level exists in the upper layer of the tunnel. Therefore, a reduction in the groundwater level during underground construction may increase the effective stress of the upper layer and cause the ground to subsidence. So It is necessary to design after accurately evaluating the change in the groundwater level. In this study, the tunnel's behavioral characteristics were analyzed through fully coupled analysis of stress and flow according to the drainage type for an urban underground tunnel.