• Title/Summary/Keyword: 유효응력 해석

Search Result 329, Processing Time 0.027 seconds

Numerical analysis of rock behavior with crack model implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1999
  • Rock behaves in a complex way due to the discontinuities. To describe the complicated failure and deformation behavior of rock, many researches were focused on the development of crack models. This study discusses the validity of the sliding and shear crack model to systematically fractured rock, i.e. coal. The model was also implemented into a numerical analysis. For that, a finite element program was modified in several ways. To describe the transverse isotropy in two-dimensional analysis, the stress-strain relationship was modified for the direction of the axis of symmetry. Also, the changes of the effective elastic moduli according to the crack growth were calculated. A simple example of two-dimensional laboratory uniaxial compression test was analyzed. The results coincided with the observations obtained from the laboratory tests.

  • PDF

A Optimal 3D FE Model for Evaluation of Peening Residual Stress Under Angled Multi-impacts (다중경사충돌시 피닝잔류응력 평가를 위한 최적의 3차원 유한요소모델)

  • Hyun, Hong-Chul;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The FE model for shot peening often assume that shots impact vertically on the engineering parts to generate compressive residual stresses. However, the shots obliquely impact on the surface in actual peening. In this work, we propose a 3D finite element (FE) model for evaluation of residual stress under angled shot peening. Using the FE model for angled multi-impact, we examine the effects of factors such as impact angle, impact pattern and the number of shots. Plastic deformation of shot is also considered. To validate the model, we then compare the FE solution with experimental result by X-ray diffraction (XRD). The proposed model will be a base of 3D multi-impact FE model with diverse impact angles.

The Behavior of Tension Splices Fastened with Bolted Connections (볼트로 접합된 인장 이음부의 거동)

  • Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.225-232
    • /
    • 2005
  • The paper presented results of the strength distributions and tension failure behaviors of splices subjected to tension forces. The bolting patterns in the tension splices are regular and staggered patterns in the research. The finite element analyses were carried out to examine the experimental results and evaluated the stress distribution patterns. The yield stresses, maximum tension stresses, stress distribution ratios, and effective net areas were analyzed through the tension experiments.

Evaluation Wave Induced Liquefaction in Seabed (파랑하중에 의한 해저지반의 액상화 평가)

  • Jang, Byeong-Uk;Do, Deok-Hyeon;Song, Chang-Seop
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 1993
  • The mechanism of wave -induced stresses and liquefactions in a seabed is studied theoretically and experimentally, A constitutive equation which is governing wave -induced effective stresses and porepressures in an unsaturated seabed under the hydraulically anisotropic conditions is developed. It is learned that the effective stresses and excessive porewater pressures are governed by the conditions of waves and sedimentary layers, Especially the magnitude of effective stresses and the depth of disturbed zone induced by waves is controlled by the degree of saturation of the unsaturated seabeds.

  • PDF

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Appoximate Analysis of Rigid Frames under Vertical and Lateral Loads (강접골조의 수직 및 수평하중에 대한 근사해석)

  • Choi, Chul Wung;Kim, Young Chan;Kang, Kyung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Even in today's computer-oriented world with all its sophisticated analysis tools, engineering judgement is required to assess the adequacy of computer output. Approximate analysis method can be a feasible tool to check solutions from computer softwares roughly. It can be a simple tool for structural engineer to check force distribution in frame. Also, it can serve as a basis in selecting preliminary member sizes. The objective of this study is length factor and inflection points. The validity of this method is examined by comparing the results of this method with those of existing methods, showing improvement in the prediction of structural behavior.

  • PDF

Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads (파압에 의한 해안구조물-해저지반의 침하거동에 대한 수치해석)

  • Kang, Gi-Chun;Yun, Seong-Kyu;Kim, Tae-Hyung;Kim, Dosam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Seabed settlement underneath a coastal structure may occur due to wave loading generated by storm surge. If the foundation seabed consists of sandy soil, the possibility of the seabed settlement may be more susceptible because of generation of residual excess pore-water pressure and cyclic mobility. However, most coastal structures, such as breakwater, quay wall, etc., are designed by considering wave load assumed to be static condition as an uniform load and the wave load only acts on the structure. In real conditions, however, the wave load is dynamically applied to seabed as well as the coastal structure. In this study, therefore, a real-time wave load is considered and which is assumed acting on both the structure and seabed. Based on a numerical analysis, it was found that there exists a significant effect of wave load on the structure and seabed. The deformation behavior of the seabed according to time was simulated, and other related factors such as the variation of effective stress and the change of effective stress path in the seabed were clearly observed.

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.