• Title/Summary/Keyword: 유효응력모델

Search Result 160, Processing Time 0.019 seconds

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

토목섬유 사이의 interface 전단 거동 modeling

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.393-400
    • /
    • 2003
  • 지오멤브레인(geomembrane)과 다른 토목섬유, 즉 지오텍스타일 또는 GCL, 사이의 interface 전단거동을 특성화하는 strain-softening 모델을 개발하였다. 본 연구에 제안된 모델은 일차적으로 smooth 지오멤브레인과 textured 지오멤브레인을 대상으로 실시한 직접전단 시험결과를 대상으로 구축되었다. 시험을 통해 측정된 변위-전단응력의 관계는 strain-softening 현상를 고려하기 위해서 최대점이 발생하는 위치를 기준으로, pre-peak과 post-peak 영역으로 나누어 분석을 실시하였다. 실험결과를 토대로 구축된 모델식은 원 자료와의 비교를 통해 본 모델의 유효성을 검증하였다. 비교 결과 높은 연직 응력에서 약간의 차이를 보이긴 하지만, 대체적으로 실험 결과와 구축된 모델을 이용한 역계산의 값이 좋은 일치를 보임을 확인할 수 있었다. 특별히 연직응력이 낮은 단계에서는 높은 일치를 보였는데, 이를 통해 제안된 식이 매립지의 최종 cover와 같이 상재 연직하중이 작은 경우에 지오멤브레인이 포함된 interface의 전단 거동에 대한 합리적인 구성 방정식이 될 수 있음을 확인할 수 있었다.

  • PDF

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (I) Proposal of Approach (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (I) 방법의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.425-436
    • /
    • 2014
  • Although the strut-tie model approaches of current design codes are regarded as the valuable methods for designs of structural concretes with D-regions, the approaches have to be improved because of the uncertainties in terms of the concepts and provisions for designs of 3-dimensional structural concretes. To improve the uncertainties, a new strut-tie model approach is proposed in this study. In the proposed approach, the concepts of employing a 3-dimensional grid element allowing load transfers in all directions at a node to construct a strut-tie model, a numerical analysis approach to determine the effective strengths of concrete struts and nodal zones by reflecting the effects of reinforcing bars and 3-dimensional stress state, and maximum areas of struts and ties to examine their load carrying capacities are integrated into the strut-tie model approaches of current design codes.

A Study on the Behavior of George Massey Immersed Tunnel during Earthquake (지진 시 George Massey 침매터널의 거동에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.221-230
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. The tunnel was founded on sandy soils and its behavior during earthquake was analyzed by an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel movements due to cyclic loading. Centrifuge tests conducted at Rensselaer Polytechnic Institute (RPI) were used to verify the model performance. The centrifuge tests consisted of 2 models: Model 1 was designed for an original ground condition, Model 2 for a ground improvement by densification. In Model 1, large deformation of the tunnel was observed due to liquefaction of surrounding soil. Because of the densified zones around the tunnel the vertical and horizontal displacements of the tunnel in Model 2 was 50% less than Model 1. Measured excess pore pressures, accelerations, and displacements from centrifuge tests were in close agreement with the predictions of UBCSAND model. Therefore, the model can be used to predict seismic behavior of immersed tunnels on sandy soils and optimize liquefaction remediation methods.

The Relationship Between Effective Stress and Shear Strength of Weathered Granite Soils Based on Matric Suctions (모관흡수력에 따른 화강풍화토의 유효응력과 전단강도의 관계)

  • Lee, Younghuy;Oh, Seboong;Kim, Kwanghyun;Seong, Yulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • The shear strength of weathered granite soils under unsaturated condition was evaluated by $K_0$ consolidated triaxial tests. Various matric suctions in the unsaturated triaxial tests were applied using suction-controlled triaxial test apparatus for weathered granite soils obtained in Daegu. Soil water characteristic curve (SWCC) laboratory tests for drying and wetting procedure were performed and van Genuchten curves were fitted by experimental results. The contribution of matric suction in unsaturated soils is directly correlated to effective stress and evaluated from SWCCs. The effective stresses were estimated from these SWCCs and the relationship between effective stress and unsaturated shear strength was determined. In the effective stress description, the unsaturated shear strength with respect to various suctions indicates unique relationship and almost the same as that of the saturated envelope.

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

3D FE Model with FEA Factors and Plastic Shots for Residual Stress Under Oblique Shot Peening (경사충돌 피닝잔류응력에 미치는 해석인자의 영향 및 소성숏이 포함된 3차원 유한요소모델)

  • Lee, Bae-Hwa;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2010
  • In this study, we propose a 3D finite element (FE) model for the residual stress under oblique shot peening. Using the FE model for an oblique impact, we examine the effects of factors on the residual stress such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate the effects. The plastic deformation of the shot is also emphasized. Then, the FE model is used to study oblique multi-impacts. The results obtained using the FE model are compared with experimental x-ray diffraction (XRD) results; in contrast to the rigid and elastic shots, plastic shots are found to produce residual stresses similar to that shown in the XRD results. Thus, the 3D FE models with integrated factors and plastically deformable shots are validated. The proposed model will serve as a basis for the 3D FE model for multi-impacts with different impact angles to simulate the actual phenomenon of shot peening.

Hydrostatic pressure in the center of wire drawing and extrusion of viscoplastic material (점소성 재료의 인발과 변형역 중심에서의 정수압에 관한 연구)

  • Oh, Hung Kuk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.170-177
    • /
    • 1981
  • 1,200.deg.C에서의 단조철은 점소성을 나타내며 인발과 압출시 변형영역이 구형수렴형태가 됨을 실험을 통하여 나타난다. 이 변형역 모델로부터 평형방정식을 사용하여 평균 압출 및 인발응력과 정수압을 계산해 낸다. 평균 압출 및 임발응력은 상계 해석 방법에 의한 결과와 비교하여 본 연구의 해석방법의 유효성을 타진하고 정수압은 다른 연구자들의 결과와 비교 검토되며 특히 냉간가공의 경우와 비교 검토 된다. 그 외에 마찰계수, 급형각도와 단면감소율의 영향에 대해서도 논의 된다.