• Title/Summary/Keyword: 유한 대형요소

Search Result 266, Processing Time 0.02 seconds

A Method for Vibration and Sensitivity Analysis of Structure Systems with Non-linear Characteristics (비선형 특성을 가진 구조시스템의 진동과 감도해석 방법)

  • Moon, Byung-Young;Kim, Sa-Soo;Iwatsubo, Takuzo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.10-18
    • /
    • 1999
  • 본 논문에서는 대형구조물의 해석에 있어서 부분구조합성법과 섭동법을 이용하여 복잡한 비선형시스템의 해석방법을 제안하였다. 해석방법은 전체시스템을 먼저 몇 개의 분계로 분할한다. 각 분계의 운동방정식에 비선형항이 존재하여도 전체시스템의 지배적 진동모드는 선형모드라는 가정하에 이 시스템의 각 분계를 모드좌표로 변환한다. 이때, 비선형항은 근사적으로 변환한다. 그리고 섭동법을 이용하여 각 분계의 모드좌표방정식은 섭동좌수별로 정식화되어 순차적으로 구해진다. 비선형의 감도는 비선형계수로 정의되고, 그에 상응하는 강성에 의해 구해진다. 제안된 해석방법으로 비선형회전체, 비선형 베어링-페데스탈로 구성된 대형시계구조물의 진동을 해석하였다. 해석방법의 유효성을 평가하기 위해 응답의 정도와 계산소요시간을 유한요소법의 결과와 비교 분석하였다.

  • PDF

Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body (프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

Structural Analysis on A Steel Roof LNG Storage Tank (강재 지붕형 LNG 저장탱크 구조안전성평가)

  • Lee, Seung-Rim;Park, Jang-Sik;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This is a comparative structural analysis for a steel roof LNG storage tank that has some advantages relatively in designing larger scale tanks and construction cost, etc. compared with a conventional concrete roof LNG storage tank as the capacity of LNG storage tanks is bigger. Structural analysis was performed on a 200,000$k{\ell}$ steel roof LNG storage tank and a concrete of the same capacity in condition of three critical load combination cases, a normal operation, a LNG spillage and seismic case by using finite element method. And comparative structural safety evaluation was carried out by using strength ratio in places of concrete wall, foundation and roof with a quantitative method.

  • PDF

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.

Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road (범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발)

  • Moon, Il-Dong;Chi, Chang-Hun;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

Optimal Design for Cushioning Package of a Heavy Electronic Product Using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.128-135
    • /
    • 2004
  • Generally, heavy electronic products undergo many different types of shocks in transportation from a manufacturer to customers. Cushioning package is used to protect electronic products from severe shock environments. Since the mass distribution of heavy electronic products is usually unbalanced and complex. it is very difficult to design a cushioning package with having high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning package for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning package for a large refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study the optimal shape of cushioning package, which has high cushioning performance and minimized volume, was obtained through the mechanical drop analysis and a optimization process. Through free drop tests of refrigerators, it was identified that the cushioning performance of the cushioning package was improved up by 25% and the its own volume was reduced by 22 %.

Optimal Design for Cushioning Package of a Heavy Electronic Product using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.677-683
    • /
    • 2003
  • Generally, heavy electronic products undergo many different types of shocks in transporting from a manufacturer to customers. Cushioning package materials are used to protect electronic products from severe shock environments. Since the mass distributions of heavy electronic products are usually unbalanced and complex, it is very difficult to design a cushioning package with haying high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning material for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning material for a large-sized refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study, the optimal shape of cushioning material, which has high cushioning performance and minimized volume, was obtained from the drop analysis and a optimization process. From free drop tests of a refrigerator, it was identified that the cushioning performance of the optimal package were improved up to 16 % and the volume of it was reduced in a range of 22 %.

  • PDF

Numerical Analysis of Foundation Reinforcing Method using Load Transfer Apparatus (하중전이 장치를 이용한 기초보강공법의 수치해석적 연구)

  • Jeon, Jun-Seo;Choi, Ki-Sun;You, Young-Chan;Ha, Soo-Kyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.617-627
    • /
    • 2021
  • In this study, a numerical analysis using a three-dimensional numerical simulation was performed to assess the applicability of foundation reinforcing method using load transfer apparatus which can be used in the remodeling of deteriorated structures. The numerical model was validated through comparison with the real scale experimental results, and then a parametric study was performed to investigate the effect of friction coefficient of load transfer apparatus and axial stiffness of pile on the performance of foundation reinforcing method. It was confirmed that the foundation reinforcing method considered in this study can efficiently control the load applied to an existing foundation.

Evaluation of Reinforced Concrete Beam's Inelastic Behavior Characteristics using Beam-column Fiber Finite Element considering Shear Deformation Effect (전단변형 효과가 고려된 보-기둥 섬유유한요소를 이용한 철근콘크리트 보의 비탄성 거동특성 평가)

  • Cheon, Ju-Hyun;Hwang, Cheol-Seong;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.130-137
    • /
    • 2017
  • The purpose of this study is to provide a reasonable analytical method for the reinforced concrete beams which shows failure mode of shear and flexure-shear by proposing a modified formulation to consider the effect of shear deformation on the beam-column fiber element based on the flexibility method and a new constitutive law of inelastic shear response history for the section. A total of 6 specimens of reinforced concrete beams which is designed to cause shear failure before yielding longitudinal reinforcement to investigate the influence of the main experimental variables on the shear behavior characteristics and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the newly modified constitutive equation by the authors. The failure mode and the overall behavior characteristics until fracture are predicted appropriately for all specimens and the results are expected to be useful enough for the 3 - D analysis to carry out reliable results of large-scale and complicated structures in the future.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.