• Title/Summary/Keyword: 유한요소 법

Search Result 5,477, Processing Time 0.032 seconds

A Study on the Verification of Design Compatibility for a Europe Type Automatic Coupler Head according to TSI Certification Standards (TSI 인증기준에 따른 유럽 표준형 자동복합연결기 헤드의 설계적합성 검증 연구)

  • Min, Kyeong Bin;Park, Jin Kyu;Kang, Ji Sung;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • The type approval system of the railway safety law, which was enforced in 2014, has been preferentially applied to the field of railway vehicles. The type approval system addresses railway vehicles and railway constituents. Unlike the previous system, it requires serial verification stages divided, in consecutive order, into verification of design compatibility and conformity and type test. These stages are in accord with international certification systems including TSI certification of the European commission. This study has been carried out to find and meet the design requirements for a coupler head, which is a part of the automatic coupler system; requirements were drawn from TSI and technical specifications that are subordinate to the domestic railway approval system. Through this study, it has been found that there exist 34 design requirements to acquire a complete coupler head. Among those requirements, 32 were verified by document inspection and two were able to be verified by performing FEA and gathering range analysis data.

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer (유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구)

  • Ahn, Heesang;Kang, Tae Young;Oh, Jin-Woo;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

EM Responses of Buried Conductive Pipes Calculated by 3-D Finite Element Method (3차원 FEM 모델링에 의한 수평 도전성 관로의 전자기 반응 특성)

  • Chung Ho-Joon;Jung Hyun-Key;Park Yeong-Sue;Jo Chul-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.48-52
    • /
    • 2000
  • We have calculated and analyzed the electromagnetic responses of buried conductive pipes due to a horizontal magnetic dipole source on the pound using a three-dimensional (3-D) finite element method to provide useful guidelines for designing electromagnetic pipe locator and for field operation of the system. For single buried pipe, the horizontal component and the horizontal difference of the vertical component of magnetic field show peaks above the pipe. When comparing the width of response curves of both cases around the peak, horizontal difference of vertical component of magnetic field shows much narrower peak, 2 times narrower at a half of maximum amplitude, than that of horizontal component of magnetic field. Accordingly, we can pinpoint the horizontal location of pipe on the ground more accurately by measuring the horizontal difference of vertical component of magnetic fold. Moreover, it will have a merit in determining the depth of pipe, because the equation for depth estimation is defined just above the pipe. When there are two buried pipes separated by two meters with each other, the response of horizontal difference of vertical component of magnetic field has two separate peaks each of which is located above the pipe whereas horizontal magnetic field response has only one peak above the pipe just below the transmitter. Thus, when there exist more than a buried pipe, measuring the horizontal difference of vertical magnetic field can effectively detect not only the pipe under transmitter but also adjacent ones. The width of response curves also indicates higher resolving ability of horizontal difference of vertical component of magnetic field.

  • PDF

Vibration Analysis of Quadrangular Plate having Attachments by the Assumed Mode Method (Assumed Mode Method에 의한 부가물(附加物)을 갖는 임의(任意) 사각형(四角形) 평판(平板)의 진동해석(振動解析))

  • S.Y. Han;Y.C. Huh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.116-125
    • /
    • 1995
  • In ship and of offshore structures, there exist many local panels of various shapes having many kinds of attachments reducible to damped spring-mass systems. For the vibration analysis of panels, analytical methods such as Rayleight-Ritz method or the assumed mode method can be efficiently applied. There have been many studies on the vibration analysis of rectangular panels using the analytical methods but relatively few for arbitrary shape panels. An efficient formulation based on the assumed mode method is presented for the vibration analysis of an arbitrary quadrangular plate having concentrated masses, supporting springs such as pillars and spring-mass systems. In the formulation, the natural coordinate system is used for the efficient treatment of an arbitrary quadrangular shape. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.