• Title/Summary/Keyword: 유한실린더

Search Result 164, Processing Time 0.031 seconds

A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder (유압실린더내 정압베어링의 특성에 관한 연구)

  • Kang, Hyung-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.

Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels (폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.1-8
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a circular cylinder in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results showed that the unsteady pressure gradient over the cylinder is enhanced by the wall interference, and as a result the fluctuations of lift and drag are augmented. The drag is further increased because of the lower base pressure. The vortex shedding frequency is also increased by the wall interference. The pressure on the test section wall shows the harmonics having the shedding frequency contained in the wall effect.

Investigation of new in the Oil-Hydraulic Pump Consisting of Swing Twin-Cylinder (요동형 쌍원통 유압펌프내의 유동장 해석에 관한 연구)

  • Sim Woo Gun;Kim Gi Son
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.7-16
    • /
    • 2005
  • Oil-Hydraulic pump consisting of swing twin-cylinder becomes to be used as a next generation of low vacuum pump. However, there is no enough flow-analysis for design improvement. It is essential to develope a numerical method for flow-analysis before manufacturing, in economic sense. Using a commercial code (Fluent), developed for flow-analysis, useful informations for design of pump were provided. Two-dimensional analysis has been performed to investigate the flow parameters such as pressure and velocity distributions between the swing twin-cylinder and the fixed cylinder. This numerical method will be used to design a better performance of pump consisting of swing twin-cylinder.

비압축성 점성유체의 유한요소 해석

  • 유원진
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.90-95
    • /
    • 1998
  • 본 고에서는 비압축성 점성유체의 유한요소해석 기법을 소개하였다. 대류항의 상류화 기법으로 안정된 해를 도출할 수 있으며 Penalty 방법에 기반하여 압력항을 지배방정식으로부터 소거함으로써 해석시간과 요구저장공간을 감소시켰다. 실린더 주변의 유동장을 해석하여 와의 방출을 성공적으로 묘사하였으며 항력계수를 17%정도의 오차로 계산하였다. 적응적 요소세분화 기법에 대한 연구를 통해 적절한 오차평가 기법 및 최적의 체눈을 형성하는 기법을 제시하였다. 또한 동적 해석에 적합한 요소재결합 알고리즘에 대한 연구가 진행중이다. 본 고의 결과는 직접적으로 풍공학분야에 사용하기에는 아직 계산 시간의 효율성이나 해의 정확도 및 안정성면에서 무리가 있으나 추가적인 연구를 통하여 해석기법의 개선을 도모하고 컴퓨터 등 계산장비의 급속한 발전으로 장래에 경쟁력을 획득할 수 있을 것으로 기대된다.

  • PDF

A Study on Structural Safety of the Boom Hoisting Cylinder of a Coal Handling Machine (석탄하역기 붐 호이스팅 실린더의 구조 안전성에 관한 연구)

  • Choi, Yong Hoon;Kwak, Hyo Seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1265-1273
    • /
    • 2015
  • A coal handling machine is a type of equipment used for loading coal, the main material in a steam power plant, along a conveyer belt from a ship, and is placed after the driving chain bucket. However, studies on the boom hoisting cylinder, which is a hydraulic system used to control the angle of the boom based on loading location, indicate that domestic models are insufficient, and are thereby often substituted with a foreign product. In this study, a technique for analyzing the contact pressure in a thick-walled cylinder was established by comparing the contact pressure, which is calculated theoretically based on the results obtained from FEM simulation, and by checking whether the working oil is leaking from the boom hoisting cylinder using a v-seal. In addition, the driving motion was simulated according to the strokes of the cylinder, and the structural stability was verified under the maximum output conditions.

Numerical Study of Natural Convection in a Square Enclosure with an Inner Circular Cylinder for Rayleigh Number of 107 (107의 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Yu, Dong-Hun;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.739-747
    • /
    • 2010
  • Numerical calculations are carried out for evaluating the natural convection induced by the temperature difference between a hot inner circular cylinder and a cold outer square enclosure. A two-dimensional solution for unsteady natural convection is obtained by using the finite volume method to model an inner circular cylinder that was designed by using the immersed boundary method (IBM) for a Rayleigh number of $10^7$. In this study, we investigate the effect of the location ($\delta$) of the inner cylinder, which is located along the vertical central axis of the outer enclosure, on the heat transfer and fluid flow. The natural convection changes from unsteady to steady state depending on the $\delta$. The two critical lower bound and upper bound positions are ${\delta}_{C,L}$ = 0.05 and ${\delta}_{C,U}$ = 0.18, respectively. Within these defined bounds, the thermal and flow fields are in steady state.

유한 요소법을 이용한 플라스틱 실린더 헤드커버의 설계평가에 관한 연구

  • 김정엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.126-132
    • /
    • 1996
  • This study is pre-research to evaluate the reasonability of convertion aluminum alloy cylinder head cover into plastic cylinder head cover using finite element analysis. The basedata which are needed in design are shown. On processing the study size of mesh and kind of elements are varied and adaptiv method is used.

  • PDF

Effect of Free End Shape on Wake Structure Around a Finite Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 실린더의 자유단 형상변화가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.105-116
    • /
    • 2003
  • The flow structure around the free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer (ABL) over open terrain was investigated experimentally with varying the free end shape. The experiments were carried out in a closed-return type subsonic wind tunnel. A finite cylinder with an aspect ratio (L/D) of 6 was mounted vertically on a long flat plate. The Reynolds number based on the cylinder diameter is about Re=7,500. The velocity fields near the FC free end were measured using the single-frame double-exposure PIV method. As a result, for the FC with a right-angled free end, there is a peculiar vortical structure, showing counter-rotating twin vortices near the FC free end. It is caused by the interaction between the entrained irrotational fluids from both sides of FC and the downwash flow from the FC free-end.

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.