• Title/Summary/Keyword: 유한수분법

Search Result 24, Processing Time 0.016 seconds

Computer and Experimental Simulation of Landfill Leachate (Computer Simulation 에 의한 매립지(埋立地)의 침출수해석(沈出水解析))

  • Lee, Jung Jun;Lee, Woo Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.41-50
    • /
    • 1987
  • The present study was conducted to measure and predict the leachate generation and to establish the methods of leachate control and handling by both field and lab-lysimeter studies. The change of biodegradable matter, field capacity, dry density, quantity and quality of leachate as a function of time of landilling were measured. The model based on the theory of unsaturated flow and contaminant transport in porous media was developed and simulation model was used for the prediction of movement of landfill moisture and for the strength in leachate in terms of organic and inorganic contaminant. The model constructed from the present study in terms of unsaturated decomposition and transport combined with the evapotranspiration and surface runoff showed good agreement with the results obtained by lysimeter studies.

  • PDF

Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study (실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구)

  • Song, Yi-Seul;Yoo, Han-Na;Eum, Shin;Kim, On-You;Yoo, Suk-Chul;Kim, Hyung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.

Moire Interferometry Measurement and Numerical Analysis for Hygroscopic Swelling of Al-Polymer Joint (Al-Polymer 접합체의 흡습팽창에 대한 모아레 간섭 측정 및 수치해석)

  • Kim, Kibum;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3442-3447
    • /
    • 2014
  • A simple method to evaluate the hygroscopic characteristics of polymer of microelectronic plastic package is suggested. To evaluate the characteristics, specimens were prepared, and the internally absorbed moisture masses were measured as a function of the absorbing time and calculated numerically. The hygroscopic pressure ratio was calculated by heat transfer analysis supported by commercial FEM code because the hygroscopic diffusion equation has the same form as the heat transfer equation. The moisture masses were then summed by the self developed code. The nonconductive polymers had quite different characteristics for the different lots, even though they were the same products. The absorbed moisture mass variations were calculated for several different characteristics, and the optimal curve of the mass variation close to experimental data was selected, whose solubility and diffusivity were affected by the hygroscopic characteristics of the material. The method can be useful in the industrial fields to quickly characterize the polymer material of the semiconductor package because the fast correspondence is normally required in industry. The weight changes in the aluminum-nonconductive-polymer joint due to moisture absorption were measured. The deformed system was also measured using the Moire Interferometry system and compared with the results of finite element analysis.

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.