• 제목/요약/키워드: 유클리드거리 분석

검색결과 56건 처리시간 0.026초

수치 데이터 분포에 적응적 유클리드 거리 측정 기법 (Adaptive Euclidean Distance Measure Method for Numeric Data Distribution)

  • 최유환;조범준;정성원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.67-69
    • /
    • 2011
  • 데이터의 군집 분석에서 두 개의 서로 다른 데이터에 대한 유사도(거리)를 어떻게 정의하는가는 매우 중요한 문제이다. 수치속성에 대한 거리 측정 방법에는 다양한 기법이 존재하지만 각 속성의 크기와 범위가 서로 크게 다를 경우 이들을 동일한 인자로 여기고 거리 측정을 하게 되면 논리적인 오류를 범할 수 있다. 기존의 군집 분석 연구에서 사용된 거리 측정 기법은 데이터의 정규화 과정을 통해 이 문제를 해결하려고 노력하지만 일반적인 정규화는 이상치의 존재나 데이터의 편중된 분포 등의 이유로 속성별 거리가 왜곡될 수 있다. 본 논문은 이러한 문제점을 해결하기 위해 정규화된 데이터에서 각 속성의 비중을 고려한 적응적 유클리드 거리 측정 기법(AEDM: Adaptive Euclidean Distance Measure)을 제안한다. AEDM은 유클리드 거리를 기반으로 정규화 된 데이터의 형태에 따라 가중치를 부여하여 데이터의 분포에 관계없이 각 속성간의 거리를 충분히 반영하기 때문에 더욱 정확한 군집 분석을 가능하게 한다.

가상 토폴로지와 지역 조정 항을 이용한 네트워크 거리 추정 (Network Distance Estimation Scheme with Virtual Topology and Local Adjustment Term)

  • 이상환
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2006년도 춘계학술대회
    • /
    • pp.241-248
    • /
    • 2006
  • 네트워크 거리 (Network distance : 일반적으로 ping이나 traceroute 등으로 측정 가능한 round trip time 등 네트워크 상에서 패킷 전송 시간) 추정 기법은 인터넷상의 많은 응용프로그램들에서 유용하게 사용된다. 예를 들면 다수의 서버를 인터넷상에 설치하고자 하는 경우 사용자들 간의 네트워크 거리를 알고 있다면 서버와 사용자간의 왕복 전송 시간 (Round Trip Time)등을 최소화할 수 있도록 서버를 분산하여 설치하는 구성을 도출해 낼 수 있을 것이다. Peer to Peer 응용 프로그램들에서도 이 네트워크 거리 정보는 매우 유용하다. 기존에 존재하는 추정 기법들은 대부분 유클리드 공간 좌표 기반 기법들로서 유클리드 좌표 상의 거리가 실제 네트워크 거리와 유사하도록 유클리드 공간 좌표를 지정한다. 그러나 이런 방법들의 문제점은 인터넷 상의 네트워크 거리가 삼각 부등식을 만족하지 않는 경우가 존재하는 등 유클리드 공간의 기본적인 가정을 만족하지 못한다는데 있다. 이런 문제점 때문에 새로운 모델이 필요하고, 이 논문에서는 가상 토폴로지(Virtual Topology) 모델과 지역 조정 항 (Local Adjustment Term) 모델을 제시하고, 기본적인 성능 분석을 시도하였다.

  • PDF

3차원 신호 전송시스템의 성능 (Performance of a 3-Dimensional Signal Transmission System)

  • 권혁찬;강석근
    • 한국정보통신학회논문지
    • /
    • 제20권11호
    • /
    • pp.2021-2026
    • /
    • 2016
  • 본 논문에서는 3차원 신호의 전송을 위한 시스템 모델을 제시하고 성능을 분석한다. 2차원 신호와는 달리 3차원 신호를 표현할 수 있는 직교형식의 부재로 인하여 여기서는 직교 기저함수를 이용하여 3차원 신호를 전송한다. 초고 차레벨 격자형 신호성상도를 이용한 모의실험 결과, 3차원 전송시스템은 2차원 시스템에 비하여 현저히 향상된 오류 성능을 가지는 것으로 확인되었다. 이러한 성능 향상은 3차원 격자형 신호성상도의 심볼간 최소 유클리드 거리가 직교진폭변조 성상도에 비하여 훨씬 증가된 것이 주요 원인인 것으로 판단된다. 이를 확인하기 위하여 최소 유클리드 거리를 비교한 결과, 3차원 1024진 성상도는 직교진폭변조 성상도에 비하여 약 2.6배 증가된 최소 유클리드 거리를 가지는 것으로 나타났다. 또한 4096진 성상도의 경우 3차원 성상도의 최소 유클리드 거리는 2차원 성상도에 비하여 약 3.2배 증가하였다.

주요고유성분분석을 이용한 연속음성의 세그멘테이션 (Segmentation of Continuous Speech based on PCA of Feature Vectors)

  • 신옥근
    • 한국음향학회지
    • /
    • 제19권2호
    • /
    • pp.40-45
    • /
    • 2000
  • 음소에 대한 사전지식 없이 음성의 신호나 특징벡터 만으로부터 음소별 경계를 추출하는 맹목 세그멘테이션의 한가지 방법은 음소별 특징벡터들 사이의 거리를 최소화하는 경계를 찾는 것이다. 이런 방법에서 특징벡터들 사이의 거리척도로 유클리드 거리가 자주 사용되고 있지만 한 음소의 특징벡터들 사이에도 많은 변화가 있어 단순한 유클리드 거리척도만으로는 음소별 경계를 추출하기에 효율적이지 못하다. 본고에서는 한 음소에 속하는 특징벡터들의 전체적인 추이를 반영한 특징벡터들 사이의 거리를 구하기 위해 주요고유성분분석법(principal component analysis)을 이용하는 방법을 제안한다. 이 방법에서는 각 특징벡터들과 이들을 주요고유성분에 투영한 점 사이의 거리를 척도로 이용한다. 제안하는 거리척도를 LBDP 알고리즘에 적용하여 연속음성의 음소간 경계를 추출하는 실험을 수행하였다. 실험 결과, 단순한 유클리드 거리를 척도로 할 때 보다 약 3-6% 정도의 누락오류를 줄일 수 있어 유용하게 이용될 수 있음을 보였다.

  • PDF

다차원척도법과 거리분석을 활용한 그룹화된 비유사성에 대한 비모수적 접근법 (Non-parametric approach for the grouped dissimilarities using the multidimensional scaling and analysis of distance)

  • 남승찬;최용석
    • 응용통계연구
    • /
    • 제30권4호
    • /
    • pp.567-578
    • /
    • 2017
  • 일반적으로 그룹화된 다변량자료는 다변량 분산분석(multivariate analysis of variance; MANOVA)을 사용하여 그룹 간 차이를 검정할 수 있다. 그러나 만약 다변량 분산분석의 기본적인 가정이 위배되면 이 방법은 적절하지 못하다. 이 경우 다양한 거리로부터 그룹화된 비유사성을 계산한 후 다차원척도법(multidimensional scaling; MDS), 거리분석(analysis of distance; AOD) 그리고 비모수적 기법인 순열검정(permutation test)을 적용하여 문제를 해결할 수 있다. 다차원척도법은 비유사성으로부터 개체들의 좌표를 계산해주며 거리분석은 이 좌표를 활용하여 그룹구조를 파악하는데 유용하다. 특히 비유사성의 측도로 유클리드 거리를 사용하면 거리분석은 다변량 분산분석과 수리적으로 매우 밀접한 연관관계를 맺는다. 따라서 본 연구에서는 그룹화된 비유사성에 다차원척도법과 거리분석을 적용하여 그룹 내와 그룹 간의 구조를 파악하고 순열검정을 위한 새로운 검정통계량을 제안하려 한다. 덧붙여 유클리드 거리를 활용한 비유사성을 통해 거리분석과 다변량 분산분석과의 수리적 연관성을 고찰하고자 한다.

모바일 라이프로그 데이터 마이닝을 위한 Non-Euclidean 데이터의 유사도 계산 (Similarity Calculation for Mobile Life Log Data Mining)

  • 이영설;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.298-301
    • /
    • 2011
  • 모바일 기기에서 수집된 많은 정보들은 시맨틱한 정보들을 포함하고 있기 때문에 수치 해석에 특화된 클러스터링 등의 데이터마이닝 방법들을 적용하기가 힘들다. 따라서 상대적인 유사도를 계산하는 방법이 많이 이용되지만, 상대적인 유사도 값조차 유클리드 거리로 환산이 불가능한 특징을 가지는 경우가 많다. 본 논문에서는 비유클리드 특징을 가지는 유사도를 TFIDF 와 pseudo-Euclidean embedding을 적용하여 유클리드 공간 상의 거리값으로 변환하는 방법을 제안한다. 제안하는 방법의 가능성을 보이기 위하여 모바일 기기에서 대학생들의 생활 패턴을 반영하는 데이터를 수집하고, 수집된 데이터에 제안하는 방법을 적용한다. 그리고 적용된 결과를 대학생들의 생활 패턴과 비교하여 분석한다. 또한 장소 간의 유사도를 이용하는 애플리케이션의 프로토타입을 개발한다.

다차원 범주형 자료의 변환과 그의 응용 (The Transform of Multidimensional Categorical Data and its Applications)

  • 안주선
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.585-595
    • /
    • 2007
  • Ahn등 (2003)의 P-행렬을 사용한 두 $c^d$-분할표의 변환자료들의 유클리드 거리제곱은 두 분할표의 셀 (cell) 상대도수벡터들 사이의 유클리드 거리 제곱에 비례함을 보이고, PP-자료의 플롯을 현대시분석과 설문자료의 탐색에 사용하는 방법을 제안한다.

관상동맥의 인터랙티브 형상 분석을 위한 3차원 골격의 자동 생성 (3D Automatic Skeleton Extraction of Coronary Artery for Interactive Shape Analysis)

  • 이재진;김정식;최수미
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.541-546
    • /
    • 2006
  • 3차원 관상동맥을 분석하기 위해서는 혈관의 분기점, 극단점, 혈관의 계층적 구조 관계를 함축적으로 표현하는 것이 매우 중요하다. 본 논문에서는3차원 CT 혈관 조영 영상으로부터 관상동맥의 3차원 골격을 자동으로 추출하는 방법을 개발하였다. 먼저, CT혈관 조영술에 의해 획득된 슬라이스 이미지로부터 3차원 조작 및 수술 시뮬레이션 등을 위하여 혈관의 3차원 표면에 대한 메쉬 모델을 생성한다. 생성된 메쉬 모델이 임의로 변형된 후에도 자동으로 골격을 쉽게 추출할 수 있도록 메쉬 모델을 복셀화하는 단계를 거친다. 이렇게 얻어진 복셀 모델로부터 표면복셀을 결정하고 표면 복셀로부터 객체 복셀까지의 유클리드 거리값를 계산하여 유클리드 거리맵(EDM)을 계산한다. 계산된 EDM 으로부터 객체 복셀이 가지게 되는 최대 내접 구를 계산하여 Discrete Medial Surface을 생성하게 되는데 이것은 골격의 후보가 된다. 골격의 후보집합 복셀에 대하여 Dijkstra 최단 경로 결정 알고리즘을 적용하여 골격을 자동으로 추출하게 된다. 이렇게 추출된 3차원 골격은 관상동맥 수술 시뮬레이션 등의 다양한 형상 분석에 유용하게 사용될 수 있다.

  • PDF

다그룹 다차원 데이터의 시각화 (Visualizing multidimensional data in multiple groups)

  • 허명회
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.83-93
    • /
    • 2017
  • k (${\geq}2$) 그룹의 p-차원 데이터의 시각화에서 가장 전형적인 방법은 Fisher의 정준판별분석(canonical discriminant analysis; CDA)이다. CDA는 마할라노비스 공간에서 k개 그룹 중심을 근사하게 통과하는 저차원 부공간에 관측점들을 사영한다. 본 논문은 척도화 유클리드 공간에서 다그룹 다차원 데이터를 시각화하는 방법을 제안하는데, 저차원 부공간의 제1축(또는 제1축과 제2축)은 그룹 중심들의 최대변별(maximum discrimination)에서 찾고 부공간의 제2축(또는 제3축)은 관측개체들의 최대산포(maximum dispersion)에서 찾는다. 이러한 혼종방법(hybrid method)은 2-그룹 다차원 자료의 시각화에서 특히 유용하다.

시간 영역 통계 기반 웨이퍼 이송 로봇의 고장 진단 (Fault diagnosis of wafer transfer robot based on time domain statistics)

  • 김혜진;홍수빈;이영대;박아름
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.663-668
    • /
    • 2024
  • 본 논문에서는 웨이퍼 이송 로봇의 고장 진단에 시간 영역에서의 통계적 분석 방법을 적용하고, 진동 및 토크 신호의 중요 특성을 파악하는 방법을 제안한다. 이를 기반으로 데이터의 차원을 축소하기 위해 주성분 분석을 사용하고, 유클리드 거리와 Hotelling의 T-제곱 통계량을 활용하여 고장 진단 알고리즘을 개발했다. 이 알고리즘은 관측된 데이터에 대해 고장 상태를 분류하는 결정 경계를 형성한다. 속도 파라미터를 고려한 데이터 분류는 진단 정확도를 향상시킴을 확인했다. 이러한 접근 방식은 고장 진단의 정확성과 효율성을 개선하는 데 기여한다.