• Title/Summary/Keyword: 유체-암석 상호작용

Search Result 14, Processing Time 0.024 seconds

Fluid-rock Interaction during Contact Metamorphism of the Hwanggangni Formation Geosan, Korea (괴산지역 황강리층의 접촉변성작용에서 유체-암석 간의 상호작용에 관한 연구)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 1996
  • Contact-metamorphosed calc-silicate hornfels of the Hwanggangni formation adjacent to Daeyasan granite in Goesan are characterized by the mineral assemblages. tremolite-clinozoisite-alkali feldspar-calcite, diopside-grossular-vesuvianite, and wollastonite-diopside-phlogopite-grossular-vesuvianite, indicating low $X_{CO_2}$ condition during contact metamorphism. Two trends of fluid-rock interactions are recognized; combination of infiltration and buffering in the outer portion of the aureole and fluid-dominated behavior in the most part of the aureole. Modal abundance of diopside produced during metamorphism was measured in order to estimate fluid/rock ratios and permeabilities with the assumption that equivalent volume of fluids estimated from the fluid/rock ratios flow through the rock body. The calculated fluid/rock rations and permeabilities range from 0.6 to 9 and $10^{-19}$ to $10^{-17}$ meabilities in the calc-silicate hosted contact aureoles and expected values during progressive metamorphism by theories.

  • PDF

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Radons-Sancheong Anorthositic Rocks (하동-산청 회장암질암의 유체-암석 상호반응에 대한 산소와 수소 동위원소 연구)

  • Park Young-Rok;Ko Bokyun;Lee Kwang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.224-237
    • /
    • 2004
  • The anorthositic rocks of the study area are divided into the northern Sancheong and southern Hadong anorthositic rocks depending on the different distribution patterns and lithologies. In order to evaluate the characteristics of the hydrothermal systems developed in the study area, oxygen and hydrogen isotopic compositions of the anorthositic rocks were measured. Oxygen isotopic values of the plagioclase exhibit an interesting spatial distribution. Plagioclase collected from the Sancheong anorthositic rocks in the northern part tends to have a relatively restricted range of $\delta$$^{18/0}$ values between 7.3 and 8.8$\textperthousand$, which are heavier than 'normal' $\delta$$^{18/O}$ value (6-6.5$\textperthousand$) typical for plagioclase of the fresh mantle-derived anorthosite, whereas plagioclase from the southern part is characterized by a wide range of $\delta$$^{18/O}$ values between -4.4 and 8.2$\textperthousand$ and much lighter values than 'normal' value for plagioclase of the fresh mantle-derived anorthosite. Plagioclase from the middle part has $\delta$$^{18/O}$ values heavier than the plagioclase from the southern part, but lighter than that from the northern part. The spatial distribution of $\delta$$^{18/O}$ values suggests that the decoupled hydrothermal flow systems might have been developed in the study area. Meteoric water dominated in the hydrothermal flow systems developed in the southern area, whereas magmatic fluid dominated in the northern area. The relationship between water content and hydrogen isotopic composition of anorthosites shows a positive correlation. The positive correlation indicates that fluids exsolved from magma during magmatic differentiation caused deuteric alteration of anorthositic rocks involving replacement of pyroxenes to amphiboles. After the deuteric alteration, hydrothermal system developed by meteoric water dominated the southern area, and erased record of the hydrothermal system developed by magmatic fluid at earlier stage. However, the development of meteoric hydrothermal system has been limited in the southern area only, and could not affect the Sancheong anorthositic rocks in the northern area. The abundant occurrences of secondary alteration minerals such as sericite, calcite, and chlorite in the southern Hadong anorthosite relative to the northern Sancheong anorthositc seem to be related to the overlapping of two distinct hydrothermal systems in the southern area.

The Cenetic Implication of Hydrothermal Alteration of Epithermal Deposits from the Mugeuk Area (무극 지역 천열수 광상 열수변질대의 성인적 의미)

  • 박상준;최선규;이동은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.265-280
    • /
    • 2003
  • The Mugeuk mineralized area that associated with the pull-apart type Cretaceous Eumseong basin is composed of several gold-silver vein deposits that are emplaced in late Cretaceous biotite granite. The gold-silver deposits in the area show various hydrothermal alteration zones as well as Au/Ag ratios and ore mineralogy. The Geumbong mine showing relatively high gold fineness is composed of multiple veins and show alteration pattern; vein \longrightarrow phyllic \longrightarrow subphyllic \longrightarrow propylitic \longrightarrow subpropylitic zone. In contrast, The Taegeuk mines show the low fineness values, in far southern part are characterized by increasing tendency of simple and/or stockwork veins. The deposit displays alteration pattern; vein \longrightarrow propylitic \longrightarrow subpropylitic zone. Variations of alteration zone with depth show that phyllic zone are dominant in deeper level and propylitic zone sporadically overlapped by argillic zone are dominant in shallow level. The differences of alteration pattern between the gold-silver deposits are reflect the evolution of the hydrothermal fluids; the ore-forming fluids of the Geumbong mine are at relatively high temperature and salinity and highly-evolved meteoric water, developing phyllic zone, the Taegeuk mine containing greater amounts of less-evolved meteoric waters shows relatively low temperature and salinity in ore-forming fluids, developing propylitic zone. The various physicochemical environment for gold-silver mineralization in the Mugeuk mineralized area is due to proximity from heat source area (Mugeuk mine) to marginal area (Taegeuk mine) in a geothermal field. Therefore, it is suggested that the criteria for project exploration in the area are to focus on the area proximal to heat source and phyllic zone.

Oxygen and Hydrogen Isotopic Compositions of the Hwacheon Granite (화천화강암의 산소와 수소 동위원소 조성)

  • Park Young-Rok;Ko Bokyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2004
  • Oxygen and hydrogen isotopic compositions of the Jurassic peraluminous Hwacheon granite were measured, and compared with those of other Jurassic peraluminous Daebo granite in Korea. $\delta$$\^$18/O values for quartz and feldspar of the Hwacheon granite range from 8.2 to 10.6 and 5.8 to 9.0$\textperthousand$, respectively. Whole rock $\delta$$\^$18/O values for banded biotite gneiss country rocks surrounding the Hwacheon granites range from 8.1 to 9.4$\textperthousand$. Whole rock and biotite $\delta$D Values for Hwacheon granite range from -84 to -113 and -107 to -113$\textperthousand$, respectively. Whole rock $\delta$D values for banded biotite gneiss country rocks range from -76 to -100$\textperthousand$. Both $\delta$$\^$18/O and $\delta$D values of the Hwacheon granite are characterized by low values compared to the 'normal' values for the fresh peraluminous granitic rocks. Low $\delta$$\^$18/O values of the Hwacheon granite resulted from fluid-rock interaction for a long period. Isotopic modelling result renders that a relatively low-$\delta$$\^$18/O fluid below -1$\textperthousand$ was involved in subsolidus isotopic exchange under a relatively high fluid/rock ratio (<-6). The fluid of meteoric origin has experienced a modification of oxygen isotopic composition as a result of fluid-rock interaction with the Hwacheon granite and surrounding metapelitic country rocks.

Upper Mantle Heterogeneity Recorded by Microstructures and Fluid Inclusions from Peridotite Xenoliths Beneath the Rio Grande Rift, USA (미국 리오 그란데 리프트 페리도타이트 포획암의 미구조와 유체포유물에 기록된 상부맨틀의 불균질성)

  • Park, Munjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • Mantle heterogeneity is closely related to the distribution and circulation of volatile components in the Earth's interior, and the behavior of volatiles in the mantle strongly influences the rheological properties of silicate rocks. In mantle xenoliths, these physicochemical properties of the upper mantle can be recorded in the form of microstructures and fluid inclusions. In this paper, I summarized and reviewed the results of previous studies related to the characteristics of microstructures and fluid inclusions from peridotite xenoliths beneath the Rio Grande Rift (RGR) in order to understand the evolution and heterogeneity of upper mantle. In the RGR, the mantle peridotites are mainly reported in the rift axis (EB: Elephant Butte, KB: Kilbourne Hole) and rift flank (AD: Adam's Diggings) regions. In the case of the former (EB and KB peridotites), the type-A lattice preferred orientation (LPO), formed under low-stress and low-water content, was reported. In the case of the latter (AD peridotites), the type-C LPO, formed under low-stress and high-water content, was reported. In particular, in the case of AD peridotites, at least two fluid infiltration events, such as early (type-1: CO2-N2) and late (type-2: CO2-H2O), have been recorded in orthopyroxene. The upper mantle heterogeneity recorded by these microstructures and fluid inclusions is considered to be due to the interaction between the North American plate and the Farallon plate.

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea (중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교)

  • Im, Heonkyung;Shin, Dongbok;Yoo, Bong-chul
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.767-785
    • /
    • 2021
  • World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 ℃ and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 ℃, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

On hydraulic characteristic analysis of landslide tsunami (산사태 지진해일의 수리특성 분석에 관한 고찰)

  • Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.203-203
    • /
    • 2022
  • 일반적으로 지진해일은 지진, 화산에 의한 융기 또는 침강에 따른 급작스러운 해저지각 운동에 의해 발생하며, 이에 따른 수위변동과 유체운동을 일컫는다. 그 밖에 해안/해저 산사태, 운석 낙하, 빙하 붕괴와 같이 암석, 토사, 얼음, 운석이 바다, 호수의 수면과 충돌하여 해일이 발생하기도 한다. 이 산사태 해일의 피해사례는 많지 않지만, 대부분 인명피해를 동반한다. 이에 과거부터 수리모형실험을 통해 산사태로 생성된 해일의 전파과정을 조사하는 연구들이 수행되었다. 최근에는 컴퓨터 성능향상과 다양한 수치모델이 개발됨에 따라 수치해석이 많이 수행되고 있다. 그러나 산사태 해일의 생성을 직접 모의하기 위해서는 유체-구조 상호작용(FSI; fluid-structure interaction)을 고려할 수 있는 전산유체역학(CFD; computational fluid dynamics)해석이 요구되는 관계로 활발한 연구가 진행되지 않고 있다. 본 연구에서는 FSI에 기초하여 충돌모의에 특화된 LS-DYNA를 이용하여 산사태 해일의 생성, 전파 그리고 직립벽(댐)에서의 처오름 및 파압 등을 검토한다. 그리고 낙하물의 형상, 낙하 높이에 따라 생성된 해일이 댐에 미치는 영향을 분석한다. 또한, 이용하는 LS-DYNA 해석의 타당성 및 유효성을 확인하기 위하여 기존 수리모형실험에서 생성된 산사태 지진해일과 비교·검증한다. 수치해석 결과, 동일한 체적의 낙하물에서는 폭이 좁을수록 최대파고가 낙하물에 근접해 생성되었고, 폭이 넓을수록 파장이 길어지는 것을 확인할 수 있었다. 낙하물의 낙하높이가 높을수록 산사태 지진해일의 파고가 크게 생성되었다. 낙하물로부터 600m 지점에서 설치한 댐에서의 산사태 지진해일의 처오름은 파고 및 파장이 클수록 증가하였다. 산사태 지진해일의 파압 역시 처오름에 상응하게 나타났다. 그러므로 호소에서 산사태 해일이 발생한다면, 댐 및 제방의 안정성에 영향을 미칠 수 있을 것으로 판단된다.

  • PDF

A Study on Hydro-mechanical Behaviors of Rock Joints using Rotary Shear Testing Apparatus (회전식 전단시험기를 이용한 암석절리의 수리-역학적 거동에 관한 연구)

  • 천대성;이희석;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.328-336
    • /
    • 1999
  • To characterize the hydro-mechanical behavior of a rock joint, a rotary shear testing apparatus was devised in this study. Shear stress was driven by twisting the end of a sample in the rotary shear testing apparatus. The test results show that the rotary shear test underestimates the peak shear strength of a rock joint. The torque is known as a function of the radial distance from the axis of rotation, resulting in the radial variation of the shear stress. Fluid flow through rock joints is mainly dependent on the Joint roughness, contact area, initial aperture. To examine the dependency, the relationship between the hydraulic and the mechanical apertures for shear-flow was established by measuring the initial aperture. It shows that the mechanical aperture and the hydraulic aperture increase linearly with the dilatancy. The difference between the hydraulic and mechanical apertures describes the deviation from the behavior predicted by the parallel plate model.

  • PDF