• Title/Summary/Keyword: 유체-암석비

Search Result 40, Processing Time 0.025 seconds

Application of the Electrical Impedance of Rocks in Characterizing Pore Geometry (암석 내 공극구조의 평가를 위한 전기임피던스의 적용)

  • Choo, Min-Kyoung;Song, In-Sun;Lee, Hi-Kweon;Kim, Tae-Hee;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The hydro-mechanical behavior of the Earth's crust is strongly dependent on the fractional volume and geometrical structure of effective pore spaces. This study aims to understand the characteristics of pores using electrical impedance. We measured the electric impedance of core samples (diameter, 38-50 mm; length, 70-100 mm) of three types of granite (Hwangdeung, Pocheon, and Yangsan) and two types of sandstone (Boryung and Berea) with different porosities and pore structures, after saturation with saline water of varying salinities. The results show that resistance decreases but capacitance increases with increasing salinity of the pore fluid. For a given salinity, the resistivity and formation factor are reduced with increasing porosity of the rocks, and the capacitance increases. Berea sandstone shows anisotropy in resistance, tortuosity, and cementation factor, with these factors being highest normal to bedding planes. This result indicates that the connectivity of pores is weakest normal to bedding. In conclusion, the electrical characteristics of the tested samples are related not only to their porosity but also to the pore geometry.

Petrogenesis of the Orbicular Gneiss in the Muju area (무주 구상편마암의 성인에 관한 연구)

  • 김용완;김형식;이설경
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.186-200
    • /
    • 1995
  • 구상구조를 보이는무주 구상편마암은 전북 무주군 왕정리일대에 분포하는 정편마암인 함전기석 복운모 화강편마암내에 배태되어 있다. 구상구조는 구상편마암의 기원암인 화강암내에 포획된 이질암이 변성분화작용을 받아 생성된 것으로 사료된다. 구상편마암은 각의 발달이 없는 초생암구로 구성된 TypeI의 암구와 각의 발딜이 있는 TypeII로 구분이 가능하다. TypeII는 단각암구와 다각암구 그리고 핵의 구조에 따라 다양한 형태로 나눌수 이TEk. 구성암은 내핵, 외학, 각, 그리고 기질부로 구성된다. 핵의 장경은 보통 5cm 내지 8cm이며 구형 또는 타원형의 행태로 암구으 중심부를 이루고 있다. 핵의 화학성분은 $Al_2O_3$, total $Fe_2O_3$, MgO, $K_2O$ LREE가 풍부하고 반대로 $Na_2O$, CaO, HREE가 결정된 것이 특징이며, 핵을 주로 구성하는 변성광물은 근청석-규선석-흑운모-올리고클레이스이다. 각은 운모류의 우혹질 각과 장석류의 우백질 각으로 구분되며 수mm내지 수cm의 두께를 이루며 단일각 내지 다각구조를 이루고 있다. 이들은 핵에 비하여 $Na_2O$, CaO가 상대적으로 부화되고 있으며 기질부를 이루는 화강편마암의 조성과 유사하다. 기지루는 반상변정질로 되어 있고 장석 반상변정의 크기는 대략 2내지 3 mm의 크기로 구성되어 있으며 부수적으로 운모류와 소량의 전기석과 규선석이 존재한다. 또한 후기에 유입된 많은 유체들에 의한 후퇴변성작용의 영향으로 장석은 견운모화내지 전기석화되고, 근청석은 피나이트화 되었다.

  • PDF

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Petrogenesis of Early Cretaceous Magmatism in Eastern China and the Gyeongsang Basin, Korean Peninsula (동중국과 한반도 경상분지의 백악기초기 화성활동의 성인 고찰)

  • Choi, Sung Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-67
    • /
    • 2016
  • Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.

A Study on Hydro-mechanical Behaviors of Rock Joints using Rotary Shear Testing Apparatus (회전식 전단시험기를 이용한 암석절리의 수리-역학적 거동에 관한 연구)

  • 천대성;이희석;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.328-336
    • /
    • 1999
  • To characterize the hydro-mechanical behavior of a rock joint, a rotary shear testing apparatus was devised in this study. Shear stress was driven by twisting the end of a sample in the rotary shear testing apparatus. The test results show that the rotary shear test underestimates the peak shear strength of a rock joint. The torque is known as a function of the radial distance from the axis of rotation, resulting in the radial variation of the shear stress. Fluid flow through rock joints is mainly dependent on the Joint roughness, contact area, initial aperture. To examine the dependency, the relationship between the hydraulic and the mechanical apertures for shear-flow was established by measuring the initial aperture. It shows that the mechanical aperture and the hydraulic aperture increase linearly with the dilatancy. The difference between the hydraulic and mechanical apertures describes the deviation from the behavior predicted by the parallel plate model.

  • PDF

Deformation History of Precambrian Metamorphic Rocks in the Yeongyang-Uljin Area, Korea (영양-울진 지역 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam Hoon;Park Kye-Hun;Song Yong Sun;Ock Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.179-190
    • /
    • 2004
  • Precambrian metamorphic rocks of Yeongyang-Uljin area, which is located in the eastern part of Sobaegsan Massif, Korea, are composed of Pyeonghae, Giseong, Wonnam Formations and Hada leuco granite gneisses. These show a zonal distribution of WNW-ESE trend, and are intruded by Mesozoic igneous rocks and are unconformably overlain by Mesozoic sedimentary rocks. This study clarifies the deformation history of Precambrian metamorphic rocks after the formation of gneissosity or schistosity on the basis of the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area experienced at least four phases of deformation i.e. ductile shear deformation, one deformation before that, at least two deformations after that. (1) The first phase of deformation formed regional foliations and WNW-trending isoclinal folds with subhorizontal axes and steep axial planes dipping to the north. (2) The second phase of deformation occurred by dextral ductile shear deformation of top-to-the east movement, forming stretching lineations of E-W trend, S-C mylonitic structure foliations, and Z-shaped asymmetric folds. (3) The third phase deformation formed I-W trending open- or kink-type recumbent folds with subhorizontal axes and gently dipping axial planes. (4) The fourth phase deformation took place under compression of NNW-SSE direction, forming ENE-WSW trending symmetric open upright folds and asymmetric conjugate kink folds with subhorizontal axes, and conjugate faults thrusting to the both NNW and SSE with drag folds related to it. These four phases of deformation are closely connected with the orientation of regional foliation in the Yeongyang-Uljin area. 1st deformation produced regional foliation striking WNW and steeply dipping to the north, 2nd deformation locally change the strike of regional foliation into N-S direction, and 3rd and 4th deformations locally change dip-angle and dip-direction of regional foliation.

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Geochemical Study on the Mobility of Dissolved Elements by Rocks-$CO_2$-rich waters Interaction in the Kangwon Province (강원도 지역 탄산수와 암석간의 반응에 의한 용존 원소들의 유동성에 관한 지구화학적 연구)

  • 최현수;고용권;윤성택;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • In order to investigate the relative mobility (RM) of dissolved elements during processes controlling major and trace element content, the concentrations of major, minor and trace elements were reviewed from the previous data of $CO_2$-rich waters and granites from Kangwon Province. The relative mobility of elements dissolved in $CO_2$-rich waters is calculated from $CO_2$-rich water/granite ratio with normalizing by sodium. The results show that gaseous input of magmatic volatile metals into the aquifer is negligible in this study area, being limited by cooling of the rising fluids. Granite leaching by weakly acidic, $CO_2$-charged water is the overwhelming source of metals. Poorly mobile element (Al) is preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-hydroxo anion forming elements (especially As and U) are mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Fe and Mn) or solid surface-related processes (adsorption or precipitation) (V, Zn and Cu).