• Title/Summary/Keyword: 유체-암석간의 비

Search Result 6, Processing Time 0.02 seconds

Fluid-rock Interaction during Contact Metamorphism of the Hwanggangni Formation Geosan, Korea (괴산지역 황강리층의 접촉변성작용에서 유체-암석 간의 상호작용에 관한 연구)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 1996
  • Contact-metamorphosed calc-silicate hornfels of the Hwanggangni formation adjacent to Daeyasan granite in Goesan are characterized by the mineral assemblages. tremolite-clinozoisite-alkali feldspar-calcite, diopside-grossular-vesuvianite, and wollastonite-diopside-phlogopite-grossular-vesuvianite, indicating low $X_{CO_2}$ condition during contact metamorphism. Two trends of fluid-rock interactions are recognized; combination of infiltration and buffering in the outer portion of the aureole and fluid-dominated behavior in the most part of the aureole. Modal abundance of diopside produced during metamorphism was measured in order to estimate fluid/rock ratios and permeabilities with the assumption that equivalent volume of fluids estimated from the fluid/rock ratios flow through the rock body. The calculated fluid/rock rations and permeabilities range from 0.6 to 9 and $10^{-19}$ to $10^{-17}$ meabilities in the calc-silicate hosted contact aureoles and expected values during progressive metamorphism by theories.

  • PDF

Experimental Study on the Hydrodynamic Dispersion of Contaminants in Geologic Media : Adsorption and Diffusion of Sr and Cr-EDTA in Granitic Rocks (수리지질계에서 지질매체에 따른 오염물질의 수리분산에 관한 실험적 연구 : 화강암질암에서 Sr과 Cr-EDTA의 흡착 및 확산에 관한 연구)

  • Chang, Ho-Wan;Lee, Kwang-Sik
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • To investigate the migration behavior of contaminants in rocks. adsorption and diffusion experiments for Sr as a sorbing contaminant and for Cr-EDTA as a non-sorbing contaminant were carried out on granitic rocks. The Sr adsorption on separated minerals and crushed rocks tends to slightly increase with increasing pH. It also greatly decreases with the increase of ionic strength in NaCl solution. Among separated minerals, biotite and sericite have adsorbed much more amount of Sr than other rock-forming minerals, such as quartz, plagioclase, and potassic feldspar, because the specific surfaces and cation exchange capacities of phyllosilicates are generally much greater than those of the other rock-forming minerals. The intrinsic diffusion coefficients of Cr-EBTA for granitic rocks differ little from those of Sr. This indicates that they are independent of water-rock interactions. Experimental data show that the intrinsic diffusion coefficients are positively correlated with the porosities of the rocks. They are close to the theoretically predicted values, especially in pre-steady state diffusion region, with the increase of rock sample thickness.

  • PDF

Geochemical Study on the Mobility of Dissolved Elements by Rocks-$CO_2$-rich waters Interaction in the Kangwon Province (강원도 지역 탄산수와 암석간의 반응에 의한 용존 원소들의 유동성에 관한 지구화학적 연구)

  • 최현수;고용권;윤성택;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • In order to investigate the relative mobility (RM) of dissolved elements during processes controlling major and trace element content, the concentrations of major, minor and trace elements were reviewed from the previous data of $CO_2$-rich waters and granites from Kangwon Province. The relative mobility of elements dissolved in $CO_2$-rich waters is calculated from $CO_2$-rich water/granite ratio with normalizing by sodium. The results show that gaseous input of magmatic volatile metals into the aquifer is negligible in this study area, being limited by cooling of the rising fluids. Granite leaching by weakly acidic, $CO_2$-charged water is the overwhelming source of metals. Poorly mobile element (Al) is preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-hydroxo anion forming elements (especially As and U) are mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Fe and Mn) or solid surface-related processes (adsorption or precipitation) (V, Zn and Cu).

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.

Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area (한국 금-은 광상의 효율적 탐사를 위한 성인모델;무극 광화대를 중심으로)

  • 최선규;이동은;박상준;최상훈;강흥석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.423-435
    • /
    • 2001
  • The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.

  • PDF