• Title/Summary/Keyword: 유체-구조물의 상호작용

Search Result 132, Processing Time 0.036 seconds

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart (인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구)

  • Park M. S.;Shim E. B.;Ko H. J.;Park C. Y.;Min B. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Earthquake Response Characteristics of a Port Structure According to Exciting Frequency Components of Earthquakes (가진 주파수성분에 따른 항만구조물의 지진응답특성에 관한 연구)

  • Kim Doo Kie;Ryu Hee Ryong;Seo Hyeong Yeol;Chang Seong Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • The seismic response characteristics of a port structure were investigated by the earthquake analyses of the structure subjected to high-, low-frequency component, and Uljin earthquakes. In the Fluid-Structure-Soil Interaction(FSSI) analysis, the fluid is modeled by the 4-node quadrilateral element which is a modification of a structural plane element, and the port structure and foundation is modelled by the plane strain element. Since the present method directly models the fluid-structure-soil interaction system using finite element method, it can be easily applied to the dynamic analysis of a 2-D fluid-port-soil system with complex geometry. The results of the seismic coefficient. added mass, and FSSI methods are compared. The results showed that the earthquake with high frequency components more affects the seismic response of the structure than that of low frequency components.

dynamic Analysis of Ring-Stiffened Axisymmetric Shells (링보강 축대칭 쉘 구조물의 동적 해석)

  • 황철성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.83-98
    • /
    • 2000
  • 자오방향 및 주변방향으로 피르스트레스트 하중이 작용된 축대칭 쉘 구조물을 기하학적으로 축대칭인 구조물의 특성을 최대한으로 이용할 수 있도록 회전 링요소로 모델화하였다 보강링 요소의 모델은 축대칭 쉘요소를 이용하였으며 본체 구조물과 절점에서 부착되있는 것으로 가정하여 이의 편심을 고려하였다 유체-구조물의 상호관계는 접촉면에서 구조물의 가속도에 비례한 부가질량으로 표현하였으며 부가질량은 유체를 비점성 비압축 및 비회전을 가정하여 유한요소법에 의해 구하였다 이에 대한 수치해석을 통하여 고유진동해석 및 지진하중을 주하중으로 한 동적해석을 실시하였다 프로그램을 통하여 해석한 결과를 프리스트레스 하중 하에서 고유진동수에 대한 정해와 비교한 결과 20개의 요소로 모델링한 경우에서도 정해와 근접한 해를 얻을 수 있었다 또한 내부유체가 있는 경우와 링보강을 한 경우에 대한 고유진동수를 문헌과 비교한 결과 근접한 해를 얻을 수 있었다.

  • PDF

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.

Fluid-structure interaction analysis of micromechanical resonance sensor (마이크로기계 공진 센서의 유체-구조물 상호 작용 해석)

  • Kang, In-Goo;Shin, Yoon-Hyuk;Yim, Hong-Jae;Lim, Si-Hyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.309-313
    • /
    • 2009
  • A micromechanical resonance sensor detects the resonance frequency shift due to mass or adsorption induced surface stress change during molecular adsorption or interaction on its surface. The resonance sensor is surrounded by gas or liquid solution during operation. To study the resonance shift phenomena depending on its surrounding environment, fluid-structure interaction of the resonance sensor has been analyzed for the different fluid environment and boundary conditions using finite element analysis.

  • PDF

Electro-Fluid-Structural Interaction Simulation of a Valveless Micropump (시뮬레이션을 통한 무밸브 마이크로 펌프의 전기-유체-구조 상호작용에 대한 연구)

  • Li, Guang-Zhe;Goo, Nam-Seo;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • In this paper, the pumping performance of a piezoelectric valveless micropump is simulated with a commercial finite element analysis software, COMSOL Multiphysics. The micropump developed in the previous work is composed of a 4-layer lightweight piezo-composite actuator (LIPCA), a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, structural domain and fluid domain are coupled in the simulation. Water flow rates are numerically predicted for geometric parameters of the micropump. Based on this study, the micropump is optimally designed to obtain its highest pumping performance.

An Effect of Surface Dashpot for KC-1 Basic Insulation System Under Sloshing Loads (슬로싱 하중을 받는 KC-1 단열시스템의 표면 완충 효과)

  • Jin, Kyo Kook;Yoon, Ihn Soo;Yang, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures. This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts. The membrane-type containment system is much more flexible compared to the steel hull structure. As a result, fluid-structure interaction plays an important role in the structural analysis of the containment system under sloshing load. This study is based on the direct calculation method of applying sloshing loads to the KC-1 basic insulation system using finite element analysis. The structural analysis of KC-1 basic insulation system considers the dashpot as fluid-structure interaction between liquid cargo and the LNG containment system. The maximum stress of the polyurethane form for KC-1 insulation system is 1.5 times lower than one without dashpot.