• Title/Summary/Keyword: 유체불안정

Search Result 120, Processing Time 0.027 seconds

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Cold Acoustic Tests for the Elucidation of the Gap of Optimal Damping Capacity of Baffled Injectors in Liquid Rocket Combustors (로켓연소기에서 분사기형 배플의 간극에 따른 감쇠특성 파악을 위한 상온음향시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • Cold acoustic tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in a liquid rocket combustor where coaxial injectors are installed. For several axial baffle lengths, an optimal acoustic damping capacitance has been achieved in a certain gap range. Cold acoustic tests for simulating fluid viscosity by changing the pressure in a model chamber have been done to study the main mechanism of optimal damping. Experimental data have shown that the optimal gap for high damping capacity exists mainly due to the viscosity near the gap of baffles. Therefore, axial baffle length can be reduced by using the optimal baffle gap, providing a possible solution of thermal cooling problems. Also, these optimum characteristics can be some guidelines for manufacturing and assembling injectors in full-scaled rocket combustors.

Mixing Process of Double Diffusive Salt Wedge (이중확산의 영향을 받는 염수침입의 혼합과정 연구)

  • Hwang, Jin-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • Salt wedge into the river from the sea or fresh water flume (fresh wedge) in the ocean from the sea has density current characteristics. However, when temperature and salinity simultaneously determine the density of wedges, one of salinity and temperature can distributed in the reversed profiles against gravity, even though the density profile is stable. In this case, the double diffusive process is critical in determining mixing rate. The present work studies relative contribution of shear driven mechanical mixing component and double diffusive layering process, when warm salty denser water is introduced into the cold fresh lighter water column. Laboratory experiment releases warm salty denser water into cold fresh lighter water controlling discharge amount to achieve the steady state of density current. When longitudinal density rate becomes 15, the released amount ratio of salt and heat changes sharply and in the releasing point, vigorous mixing occurs with increase of discharged amount due to double diffusion. Double diffusion distabilizes gravitational stability and enhances the mixing rate up to $6{\times}10$ times at the lower density ratio comparing to the higher density ratio.

  • PDF

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

Current R&Ds Status for Shale Gas Extraction (셰일가스 생산에 관한 연구개발 현황)

  • Han, Bangwoo;Kim, Hak-Joon;Kim, Yong-Jin;Kim, Han-Seok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • Shale gas is in the limelight as one of the new energy sources under the circumstances of unstable energy supply and high energy consumption. It is expected to change dynamics of global energy markets due to its abundant resources and global distribution. Shale gas extraction process consists of drilling, fracturing and production. We have surveyed the technologies required for shale gas developments such as a horizontal drilling, a hydraulic fracturing and so on, the environmental issues occurred during the development, the additional technologies to solve the environmental problems and the current research and developments status.

Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models (난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구)

  • Min, June Kee;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2014
  • Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

Rheological Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알카리 내성 Bacillus sp.가 생산하는 생물 고분자의 리올로지적 성질)

  • Lee, Shin-Young;Kim, Jin-Young;Shim, Chang-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-544
    • /
    • 1996
  • A highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its rheological properties were studied. 1% (w/v) solution of purified biopolymer showed pseudoplastic fluid behavior with the yield stress similar to those of xanthan and guar gum, and its consistency index was exponentially dependent on concentration and temperature. The concentration dependency of consistency index exhibited two rectilinear plots with different slopes at 1% concentration and pseudoplastic property increased with the increase of biopolymer concentration. The biopolymer solution exhibited a low temperature dependency and the activation energy of flow was 1.16 kacl/g mol. The apparent viscosity was very dependent on the change of pH and the addition of salt. However, no organic solvent effects were observed effects of viscosity synergism with the addition of viscosifier were not observed.

  • PDF

Chemical Characterization of Oscillatory Zoned Tourmaline from Diaspore Nodule, an Aluminum-rich Clay Deposit, Milyang, South Korea (밀양 고알루미나 점토광상 다이아스포아 단괴내의 진동누대 전기석의 화학적 특징)

  • Choo, Chang-Oh;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.227-236
    • /
    • 2005
  • Hydrothermal tourmaline occurs as aggregates or dissemination in the diaspore nodule from an aluminum-rich clay deposit, Milyang, southeastern Korea. Most crystals of tourmaline show complex textures that are finely zoned. The fine-scale chemical zonation of hydrothermal tourmaline reflects the fluctuation conditions that would be expected from fluid mixing in open systems. Oscillatory chemical zoning in tourmaline formed and showed similar patterns, regardless of its crystallographic directions. Mg was enriched in the early stage of crystal growth while Fe was enriched in the later stage, with fluctuations of the ratio of Fe to Mg. Chemical analysis, BSE images, and X-ray compositional maps confirm that the oscillatory Boning in tourmaline is exclusively controlled by the variations of Fe and Mg contents, but the contribution of boron to the zonation is insignificant. The fact that tourmaline altered to diaspore and dickite indicates that tourmaline was unstable with respect to these aluminous minerals as the B, Fe, and Mg activities decreased. Therefore, the aluminum activity may control the stability of tourmaline in the hydrothermal system.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Review of Propellant Vibration and Control of Liquid Rocket Fuselage Feeding System (액체로켓 기체공급계의 추진제 진동특성 및 제어기술 동향)

  • Cho, Nam-Kyung;Kho, Hyun-Seok;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.89-94
    • /
    • 2010
  • Fuselage propellant feeding system should supply propellants to engine with required flow rate, temperature and pressure. Propellant vibration in engine and feeding line changes feeding characteristics, and frequently inhibits to satisfy the required feeding requirements. Sloshing and POGO vibration are known to be the major vibration phenomena. Concerning sloshing and POGO, vehicle control and structural dynamics aspects are extensively studied, whereas, its effect on propellant feeding performance is not clearly understood. This paper focuses on the deviation of required feeding performance due to propellant vibration. Overall characteristics of propellant vibration and its effect on propellant supply to engine are reviewed and control mechanism for suppressing vibration is introduced.

  • PDF