• Title/Summary/Keyword: 유체구조연성

Search Result 207, Processing Time 0.03 seconds

Experimental Modal Analysis of Two Unequal Rectangular Plates Coupled with Fluid (유체로 연성되고 두께가 상이한 두 직사각 평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2541-2549
    • /
    • 2002
  • In order to study the vibration characteristics of fluid-structure interaction problem, two rectangular plates coupled with bounded fluid were investigated. Experimental modal analyses were carried out to extract the modal parameters of the system. Additionally. finite element modal analyses performed using a commercial computer code, ANSYS. The FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The thickness effect of the plates on the fluid-coupled natural frequencies and mode shapes was investigated for two different cases with the identical thickness and the unequal thickness. It was found that the coupled natural frequencies increase with the thickness for the identical plates regardless of the mode phase. The experimental and the finite element analysis results showed that the out-of-phase mode shapes were deviated from the symmetrical mode shapes in the plate transverse direction fur the unequal plate thickness case.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Numerical Simulation of Sloshing Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 슬로싱 시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.687-693
    • /
    • 2016
  • The rapid turning and acceleration movement of a rotorcraft leads to a sloshing phenomenon in the fuel tank. Sloshing caused by rapid movement can affect the internal components by creating an excessive load. In severe situations, the resulting damage to the internal components and pipes can also lead to the tearing of the fuel tank itself. Therefore, to improve the survivability of the crew, the internal components of the fuel tank must be designed to retain their structural soundness during the sloshing phenomenon. In order to accomplish this, the sloshing load acting on the components first needs to be determined. This paper investigates the sloshing load applied to the internal components by performing numerical analysis for rotary-wing aircraft fuel tanks in the sloshing test. Fluid-Structural Interaction (FSI) analysis based on smoothed particle hydrodynamics (SPH) is conducted and the conditions specified in the US military standard (MIL-DTL-27422D) are employed for the numerical simulation. Based on this numerical simulation, by analyzing the load applied to the internal components of the fuel tank due to the sloshing phenomenon, the possibility of obtaining the design data by numerical analysis is examined.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

Wave Control by Bottom-Mounted and Fluid-Filled Flexible Membrane Structure (유체가 채워진 착저신 유연막 구조물에 의한 파랑제어)

  • 조일형;강창익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • In this paper, the interaction of oblique incident waves with a bottom-mounted and fluid-filled flexible membrane structure is investigated in the frame of linear hydro-elastic theory. The static shape of a membrane structure containing the fluid of a specific density is initially unknown and must be calculated before the hydrodynamic analysis. To solve hydrodynamic problem, the fluid domain is divided into the inner and outer region. The inner solution based on discrete membrane dynamic model and simple-source distribution over the entire fluid boundaries is matched to the outer solution ba~ed on an eigenfunction expansion method. The numerical results were compared to a series of Ohyama's experimental results. The measured reflection and tran¬smission coefficients reasonably follow the trend of predicted values. Using the computer program developed, the performance of a bottom-mounted and fluid-filled flexible membrane strocture is tested with various system parameters (membrane shape, internal pressure, density ratio) and wave characteristics (wave frequencies, incident wave angle). It is found that a bottom-mounted and fluid-filled flexible membrane structure can be an effel;tive wave barrier if properly designed.

  • PDF

Analysis of Acoustic Radiation Efficiency and Underwater Radiated Noise of Double Bottom-shaped Structure (이중저 형상 구조물의 음향방사효율과 수중방사소음 해석)

  • Choi, Sung-Won;Kim, Kook-Hyun;Cho, Dae-Seung;Suh, Kyu-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.158-163
    • /
    • 2012
  • Recently, reducing underwater radiated noise (URN) of ships has become an environmental issue to protect marine wildlife. URN of ships can be predicted by various methods considering its generating mechanism and frequency ranges. For URN prediction due to ship structural vibration in low frequency range, the fluid-structure interaction analysis technique based on finite element and boundary element methods (FE/BEM) is regarded as an useful technique. In this paper, URN due to a double bottom-shaped structure vibration has been numerically investigated based on a coupled method of FE/BEM to enhance the prediction accuracy of URN due to the vibration of real ship engine room structure. Acoustic radiation efficiency and URN transfer function in case of vertical harmonic excitation on the top plate of double bottom structure have been evaluated. Using the results, the validity of an existing empirical formula for acoustic radiation efficiency estimation and a simple URN transfer function, which are usually adopted for URN assessment in initial design stage, is discussed.

The Study of Aerodynamic about High-speed projectiles using Fluid Structure Interaction analysis (유체 구조 연성 해석기법을 이용한 고속발사체에 미치는 공력의 수치해석적 연구)

  • Kang, Mingyu;Park, Dongjin;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2012
  • This paper is focusing on the define the safety of high speed projectiles from aerodynamic load. The Fin loaded from aerodynamic is the roll of high speed projectile's gide. The Fin can rotate about 25deg as maximum, and it has maximum aerodynamic load with 25deg position. For finite element analysis from aerodynamic load, fluid analysis will be conducted before structure analysis and export pressure data. The pressure data will be used as load condition at structure analysis of Fin. The result of structure analysis of Fin, there is some stress concentration and stress closed with yield stress of material. But this problem will be solved with change to another material.

Analytical Study on Hydroelastic Vibration of Stiffened Plate for a Rectangular Tank (사각형 탱크 보강판의 유체구조 연성진동에 대한 이론적 인구)

  • Kim, K.S.;Kim, D.W.;Lee, Y.B.;Choi, B.H.;Choi, S.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.65-68
    • /
    • 2005
  • In this paper, a theoretical study is carried out on the hydroelastic vibration of a rectangular tank wall. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to wall vibration. In addition, the vibration characteristics of stiffened wall of the rectangular tank are investigated. Assumed mode method is utilized to the stiffened plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method and then added mass effect is discussed due to tank length and potential mode.

  • PDF

Topological Optimization of Heat Dissipating Structure with Forced Convection (강제 대류를 통한 열소산 구조물의 위상최적화)

  • Yoon, Gil-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

Dynamic Characteristics Research of DVD Disk due to Disk-Wall Gap (간격 변화에 따른 DVD 디스크의 동특성 연구)

  • 임효석;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1095-1100
    • /
    • 2003
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of DVD disks are investigated in this paper. The experimental results are compared with the theoretical analyses where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments are performed using a vacuum chamber and DVD disks rotating in vacuum, open and enclosure with several different gaps between disk and wall. The following three results are given. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency decreases as the disk-wall gap is decreased. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF