• Title/Summary/Keyword: 유지 보수 로봇

Search Result 54, Processing Time 0.018 seconds

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.

AGV Distance Learning Model Based on Virtual Simulation (가상 시뮬레이션 기반의 AGV 원격 교육 모델)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.41-46
    • /
    • 2020
  • The start of the Fourth Industrial Revolution has brought about various changes in the domestic industry in general, and smart factories have spread to companies in the fields of production, manufacturing and logistics, and they are using automation equipment. Especially in the field of logistics automation, AGVs are widely used, and most of them use the line guidance system, which is the traditional AGV drive system. In addition, the demand for AGV system developers, system operators and managers, and maintenance personnel is increasing, and the installation of systems for education is expensive and requires a large space to utilize. It is a situation where systematic education is difficult. In this paper, we propose a virtual simulation-based AGV distance education model for smooth practice of trainees. The proposed model consisted of a model that can drive the AGV by analyzing video information, instead of the line guidance method that is the conventional technology. As a result of self-diagnosis evaluation, it was confirmed that the experimental group through online education had an average satisfaction level of 0.65 higher than the control group using existing equipment, and that it could be used in an online education environment.

An Identification and Specification Method of Crosscutting Concerns based on Goal-Scenario Modeling for Aspect-Oriented Software Development (Aspect-Oriented 소프트웨어 개발을 위한 목표-시나리오 모델링 기반의 횡단관심사 식별 및 명세화 방법)

  • Kim, Sun-Hwa;Kim, Min-Seong;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.424-430
    • /
    • 2008
  • Identifying crosscutting concerns during requirements engineering phase is one of the most essential parts in Aspect-Oriented Software Development. Considering crosscutting concerns in the earlier phase of the development improves consistency among requirements so that it can help maintain software systems efficiently and effectively. It also provides a systematic way to manage requirements changes by supporting traceability throughout the software lifecycle. Thus, identifying tangled and scattered concerns, and encapsulating them into separate entities must be addressed from the early phase of the development. To do so, first, functional and non-functional concerns must be clearly separated. Second, a pointcut where a main concern meets crosscutting concerns should be defined and specified precisely. Third, it is required to detect conflicts being occurred during composition of crosscutting concerns from the earlier phase. Therefore, this paper proposes a systematic approach to identifying and specifying crosscutting concerns using goal-scenario based requirements analysis. And we demonstrate the applicability of the approach by applying it into the intelligent service robot system.

Implementation of Smart Automatic Warehouse to Improve Space Utilization

  • Hwa-La Hur;Yeon-Ho Kuk;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.171-178
    • /
    • 2023
  • In this paper, we propose a smart automated warehouse to maximize space utilization. Previous elevator-type automatic warehouses were designed with a maximum payload of 100kg on trays, which has the problem of extremely limiting the number of pallets that can be loaded within the space. In this paper, we design a smart warehouse that can maximize space utilization with a maximum vertical stiffness of 300kg. As a result of the performance evaluation of the implemented warehouse, the maximum payload was 500.6kg, which satisfied the original design and requirements, the lifting speed was 0.5m/s, the operating noise of the device was 67.1dB, the receiving and forwarding time of the pallet was 36.92sec, the deflection amount was 4mm, and excellent performance was confirmed in all evaluation items. In addition, the PLC control method, which designs the control UI and control panel separately, was integrated into the PC system to improve interoperability and maintainability with various process management systems. In the future, we plan to develop it into a fully automatic smart warehouse by linking IoT sensor-based logistics robots.