본 논문에서는 유전자 발현데이터로부터 유전자 조절네트워크를 추론하는 유전자 알고리즘을 제안한다. 근래에 유전자 알고리즘을 이용하여 유전자 조절네트워크를 추론하려는 시도가 있었으나 그리 성공적이지 못하였다. 우리는 본 논문에서 유전자 조절네트워크를 보다 효율적으로 추론할 수 있게 하기 위하여 새로운 유전자 인코딩 기법을 개발하여 적용하였다. 선형 유전자 조절네트워크로 모델링 된 인공 유전자 조절네트워크를 사용하여 실험한 결과 대부분의 경우에 있어서 주어진 인공 유전자 조절네트워크와 유사한 네트워크를 추론하였으며 완전히 동일한 유전자네트워크를 추론하기도 하였다. 향후 실제 유전자 발현 데이터를 이용하여 추론해 보는 것이 필요하다.
세포의 활동은 단순히 하나의 유전자의 발현으로 설명되기보다 여러 유전자와 그로 인해 생성된 단백질의 상호 작용에 의해 나타난다. 또한 마이크로어레이 실험을 통해 세포 내의 유전자 발현에 대한 정보를 알 수 있게 되고, Chromatin IP 마이크로어레이 실험을 통해 신뢰도가 높은 유전자 발현 조절 관계 데이터를 얻을 수 있게 되면서, 유사한 기능과 유사한 발현 패턴을 보이는 유전자들을 그룹으로 묶어 유전자 모듈로 규정하고 이를 하나의 유전자 조절 네트워크로 구성하고, 분석하는 연구들이 진행되고 있다. 본 논문에서는 ChIP 실험 데이터와 유전자 발현 데이터를 이용하여 지역 정렬을 수행해 하나의 유전자 모듈을 조절하는 조절 프로그램을 예측하는 알고리즘에 대해 기술한다. 조절 프로그램은 유전자 조절 모듈을 조절하는 조절자들의 역할 및 발현 여부에 따른 유전자 조절 모듈 내 유전자들의 발현을 설명할 수 있는 것이다.
초파리 초기 발생과정은 gap 유전자, pair-rule 유전자, polarity 유전자의 세 가지 유전자 그룹에 의해서 조직화 된다. Gap 유전자들에 의해 pair-rules 유전자들의 발현이 조절되며, 이들에 의해 결국 polarity 유전자들의 발현을 조절함으로써, 정확한 위치에서 각 기관의 형성을 유도한다. 특히 분열 14단계에서는 pair-rule 유전자 중의 하나인 eve 유전자의 발현이 조절되는데, eve 유전자는 배아의 분할의 줄무늬를 형성시키는 유전자에 해당된다. 본 논문에서는 eve 유전자의 발현조절자인 hunchback, giant, kruppel, bicoid의 gap 유전자들로 구성된 조절 네트워크를 S-system을 이용하여 모델링하였다. 이를 통해 각 유전자들의 발현 데이터로부터 파라미터들을 진화 연산을 통해 예측하고, 각 유전자들의 발현에 대한 시뮬레이션 결과를 보여준다. 예측된 결과와 실제 데이터의 비교는 전체적으로 패턴이 서로 유사함을 보여주고 있다.
유전자들은 복잡한 상호작용을 통해 세포의 기능이 조절된다. 상호작용하는 유전자 그룹들을 유전자 조절 네트워크라고 한다. 기존의 유전자 조절 네트워크는 2D microarray 데이터를 이용하여 시간의 흐름에 따른 유전자간의 상호작용을 알 수가 없었다. 이 논문에서는 시간의 변화에 따른 유전자들 간의 조절관계를 살펴 볼 수 있는 조절네트워크 모델링의 방법을 제시한다. 유전자의 발현양을 표시하기 위해 이진 이산화 방법을 사용하였고 3D microarray 데이터에서 유전자 발현 패턴을 찾기 위해 Cube mining 알고리즘을 적용하였고, 유전자간의 관계를 밝히기 위해 시간 관계 규칙탐사 기법을 사용하여 유전자들 간의 시간 관계를 포함한 유전자 조절네트워크를 구축하였다. 이 연구는 시간의 흐름에 따른 유전자간의 상호작용을 알 수 있으며, 모델링된 조절 네트워크를 이용하여 기능이 아직 발견되지 않은 유전자들의 기능을 예측 할 수 있다.
유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.
태반 영양배엽 (trophoblast)은 포유동물의 발생과정 중 가장 먼저 분화되는 세포로서, 자궁환경내에서 배아가 착상, 발생, 및 분화하기 위해서 반드시 필요한 태반을 형성하는 색심적인 세포이다. 영양배엽 세포의 분화과정중의 결함은 배아의 사산이나 임신질환 등의 치명적 결과를 초래한다. 하지만, 영양배엽 세포의 분화를 조절하는 분자생물학적인 메카니즘은 아직 규명되지 않고 있다. 영양배엽 세포의 분화를 조절하는 경로를 규경하기 위한 선결과제는 분화된 영양배엽 세포에서만 발현하는 많은 유전자들이 밝혀져야만 한다. 본 연구팀은 최근에 분화된 영양배엽 세포에서만 발현하는 두 종류의 새로운 유전자들을 찾았다. 한 종류는 homeobox를 보유하고 있는 조절 유전자 Psx이고, 다른 한 종류는 임신호르몬인 태반 프로락틴 라이크 단백질 유전자 PLP-C${\beta}$이다. 본 연구과제의 목표는 이들 유전자의 기능과 조절 메카니즘을 규명함으로써, 영양배엽 세포의 분화를 조절하는 조절경로를 밝히는 것이다. 이를 위하여 다음과 같은 일련의 연구를 수행할 것이다. 1) Psx 유전자가 분화된 영양배엽 세포에서만 발현케 하는 조절 메카니즘을 규명하기 위해 functional assays, in vitro footprinting, gel mobility shift assays, 생쥐형질전화, UV crosslinking, Southwestern blot 등의 방법을 통해 Psx 유전자의 cis-acting 요인과 trans-acting factor를 밝혀 분석한다. 2) 영양배엽 세포의 분화조절 경로를 규명하기 위해 random oligonuclotide library screening, DD-PCR, subtractive screening 등의 방법을 이용하여 Psx 유전자에 의해 조절되는 하부유전자를 밝힌다. 3) Psx 유전자를 knock-out시켜 영양배엽 세포가 발달 및 분화하는데 미치는 역할을 밝힌다. 4) Yeast two-hybrid screening방법을 이용하여 태반 프로락틴 유전자의 수용체를 찾아 이들의 신호전달 기전을 밝힌다. 제1차년 연구결과로서, mouse와 rat으로부터 각각 Psx 유전자의 genomic DNA를 클로닝하여, 유전자 구조를 비교한 결과, mouse Psx (mPsx2)는 4개의 exons으로 이루어져 있는 반면에, rat Psx (Psx3)는 3개의 exons으로 구성되어 있었다. 즉, rPsx3는 mPsx2의 exon1이 없었다. Notrhern blot과 in situ hybridization 분석에 의해 mouse와 rat에서 Psx 유전자가 다르게 발현 조절되는 현상을 밝혔다. 실제로 mPsx2와 rPsx3의 5'-flanking지역을 클로닝하여 염기서열 분석 결과 전혀 homology를 찾을 수 없었다. 또한, 이들 각각 promoter의 activity를 luciferase reporter를 이용하여 조사한 결과 Rcho-1 trophoblast cells에서 각기 다른 activity를 보여 주는 것을 발견하였다. Psx 유전자의 transcription start sites는 Primer extension에 의해 밝혔다. 또한 Psx2 유전자를 knock-out 시키기 위해 targeting vector를 Osdupde1에 제작하였다. 본 과제를 시작할 때 새로운 프로락틴 유전자 하나를 클로닝하여 이 유전자를 PLP-I라고 이름을 붙였다. 이 후 이 유전자 (PLP-I)는 PLP-C${\beta}$라고 이름을 붙이게 되었다. Mouse PLP-C${\beta}$ 유전자의 counterpart를 rat에서 찾아 염기서열을 비교한 결과 mouse와 rat에서 PLP-C${\beta}$유전자의 homology는 약 79% (amino acid level)였다. 본 연구과정을 통해 또 하나의 새로운 PLP-C subfamily member를 mouse로부터 클로닝 하였고, 이 유전자를 PLP-C${\gamma}$라 하였다. PLP-C${\beta}$와 PLP-C${\gamma}$의 발현 유형은 Northern blot과 in 냐셔 hybridization 분석에 의해 태반의 제한된 spongitrophoblast와 trophoblast giant cells에서만 발현하는 것을 밝혔다. 놀랍게도 이들 두 새로운 유전자는 alternative splicing에 의해 두 종류의 isoform이 있음을 밝혔다. PLP family member 유전자로서 splicing에 의한 isoforms을 보여 주는 유전자로는 PLP-C${\beta}$와 PLP-C${\gamma}$가 최초이다. 이들 isoform mRNAs의 발현 유형은 RT-PCR 방법을 이용하여 규명하였다. 또 하나의 새로운 발견은 PLP-C${\beta}$와 PLP-C${\gamma}$가 독특한 유전자 구조를 갖고 있었다. 즉, PLP-C${\beta}$는 exon3의 alternative splicing에 의해 5개 혹은 6개의 exons을 갖는 two isoforms이 생긴다. 반면에 PLP-C${\gamma}$는 exon2가 alternative splcing이 되면서 7개의 exons을 갖거나 6개의 exons을 갖는 isoforms을 만든다. 그리고, PLP-C${\gamma}$의 promoter activity를 trophoblast Rcho-l${\gamma}$ 세포주를 이용하여 PLP-C${\gamma}$ 의 1.5 kb 5'-flanking 지역이 trophoblast-specific promoter activity를 갖고 있음을 밝혔다. PLP-C${\gamma}$ 유전자의 transcription start site는 Primer extension에 의해 밝혔다. 제 1차 년도의 연구결과를 토대로, 2차년에서는 다음단계의 연구를 수행하고자 한다. 즉, 1) mPsx2와 rPsx3의 promoter를 비교분석 함으로서 mouse와 rat에서 Psx 유전자가 다르게 조절되는 메카니즘 규명, 2) Psx와 PLP-C 유전자의 promoter에 있는 cis-acting elements 탐색, 3) Psx2와 Psx3의 단백질을 이용하여 이들이 binding하는 target sequence 규명, 4) 제작한 Psx2 targeting vector를 이용하여 ES cells에서 Psx2 유전자 knock-out, 5) Psx 유전자를 과발현시키는 세포주를 만들고 Psx에 의해 조절되는 유전자 탐색, 6) 새로 밝히 PLP-C members 유전자들의 조절기전을 Rcho-1 세포주를 이용하여 여러 거지 성장인자와 다른 호르몬에 대한 반응을 탐색, 7) Psx와 PLP-C${\gamma}$ 유전자의 chromosomal mapping 등을 밝힐 것이다.
Transgenic animal을 응용할 수 있는 분야에서는 이식유전자의 기능을 정확하게 규명하고 이를 바탕으로 실질적인 유전적인 개량을 이루기 위해서 이식유전자의 발현을 조절할 수 있는 정교한 system이 필요하다. 유전자의 미세주입법에 의해 transgenic animal을 생산할 수 있는데 이용되고 있는 tissue-specific promoter에 의한 이식유전자의 발현조절은 필요로 하는 시기나 양 등을 인위적으로 조절하고자 하는데 한계점을 갖고 있다. 이러한 이식유전자 발현의 문제점을 극복하기 위해 효모의 recombinase나 미생물의 repressor 단백질과 이들의 binding site인 operator sequence를 이용하여 인위적으로 이식유전자의 발현을 조절할 수 있는 system이 개발되고 있다. Cre/loxP system은 site-specific recombination에 의해 DNA sequence를 제거함으로서 이식유전자의 발현을 조절할 수 있다. 이식유전자 발현의 장소와 양을 조절하기 위해서는 미생물이 이용하고 있는 repressor와 이들의 operator sequence를 적용하여 ligand binary system이 개발되었다. Lac repressor system에서는 isopropyl-$\beta$-D-thiogalactoside (IPTG)가 이식유전자 발현을 조절할 수 있는 positive regulator로서 작용하고, tetracycline-VP16 system에서는 tetracycline이나 유사물질들이 negative regulator로서 이용할 수 있다. 이러한 binary system은 transgenic animal에서 이식유전자 발현의 장소와 시기 또한 양을 효과적으로 조절하는데 적용할 수 있는 것으로 나타났다. 따라서 기존의 binary system과 함께 새로운 regulatory system의 장점을 이용하여 보다 완벽한 이식유전자의 인위적인 조절 system을 이룩함으로서 transgenic animal technology의 실용화를 앞당길 것으로 기대된다.
연구목적: Estrogen은 포유류의 생리주기와 착상과정에서 중요한 조절인자로 작용한다. 본 연구에서는 난소 절제된 생쥐의 자궁에서 estrogen에 의해 직접 또는 간접적으로 조절되어 발현하는 유전자를 분석하고자 하였다. 연구재료 및 방법: 생후 8주된 생쥐의 양쪽 난소를 절제하고 14일 동안 회복기간이 지난 후, estrogen (300 ng/mouse)을 피하로 주사하였다. Estrogen 주사 후 6, 12시간째 자궁을 적출하여 cDNA microarray와 laser capture microdissection (LCM) 기술을 이용하여 estrogen에 의해 조절되는 유전자의 시공간적인 발현 양상을 조사하였다. 결 과: Estrogen 주사 후 6시간째에는 조사된 전체 유전자 가운데 0.9% (증가 22, 감소 49), 12시간째에는 8.4% (증가 351, 감소 287)에 해당되는 유전자가 두 배 이상 증가 혹은 감소하는 결과를 보였다. 또한 일부 증감된 유전자를 선택한 후 LCM 기술을 이용하여 시공간적인 발현양상을 확인한 결과 자궁내막상피세포에서만 estrogen에 의해 유전자의 발현이 증가되는 일부 유전자를 선별하였다. 결 론: 이상의 결과들을 종합해보면 1) estrogen에 의해 조절되는 유전자의 수나 증감의 정도는 12시간 이후에 더 많고, 크게 조절되며, 2) 유전자의 조절부위가 자궁의 특이적인 세포층에서 시공간적으로 조절됨을 의미한다. 이러한 유전자의 정보는 생리주기 또는 착상과정의 분자생물학적 기작을 이해하는 데 도움이 될 것이다.
유전자 조절망은 유전자의 발현이 다른 유전자에게 영향을 주는 것을 표현하는 유전자 망이다. 오늘날 마이크로 어레이 실험으로부터 유전자의 발현량을 측정한 대용량의 데이터가 이용 가능하다. 전형적인 데이터중의 하나는 특정 유전자를 제거한 후 다른 유전자의 발현량을 측정한 steady-state data이다. 본 논문은 이런 측정 데이터를 이용하여 중복 정보를 최소화하는 유전자 조절망을 재구성하는 방법을 제시한다. 제시한 모델은 기존 연구에서는 고려되지 않았던 사이클 형태로 나타나는 자동 조절 기능을 고려하였고, 또한 유전자의 억제자 또는 촉진자 역할을 고려하였다.
최근 각 유전자들이 크로닝되고 단백질과 유전자의 특성이 밝혀지면서 PTS를 코드하는 유전자의 발현 조절기작과 PTS 단백질 구조에 대한 정보가 축적되었다. 본고에서는 현재까지 밝혀진 PTS 단백질들의 기능과 성질 및 그 유전자들의 조절작용에 대해 알아보고 PTS가 물질의 대사에 미치는 조절작용은 따로 언급하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.