• Title/Summary/Keyword: 유연 벽면

Search Result 19, Processing Time 0.017 seconds

A Study on the Behavior of a Spinning Flexible Disk near a Curved Wall (곡률이 있는 벽면근처에서 고속회전하는 유연디스크의 거동 해석)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • Information storage devices have been studied to increase the storage capacity and the data transfer rate as well as to decrease the access time and their physical sizes. Optical information storage devices have been achieved high-capacity by reducing optical spot size remarkably due to the development of Blue-ray technology. Optical information storage devices usually use 1.2mm-thick polycarbonate(PC) media to get high enough stiffness. However, it would be better if we can decrease the thickness of a disk for achieving thinner device while keeping the capacity as large as possible. Decreasing the thickness of the storage media makes it difficult to read and write data because it increases the transverse vibration of the rotating disk due to the interaction with surrounding air and the vibration characteristics of thin flexible disk itself, Therefore, a special design based on the fluid mechanics is required to suppress the transverse vibration of the disk in non-contact manner so that the optical pickup can read/write data successfully. In this study, a curved wall is proposed as a stabilizer to suppress the transverse vibration of a $95{\mu}m$-thick PC disk. The characteristics of disk vibration due to a curved wall have been studied through numerical and experimental analysis from the fluid mechanics point of view. The proposed shapes are possible candidates as stabilizers to suppress the transverse vibration of a flexible disk which rotates at high speed.

  • PDF

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Hydrodynamic Characteristics of Self-expandable Graft Stents in Steady Flow (정상유동에서 자가팽창성 그래프트 스텐트의 수력학적 특성)

  • 이홍철;김철생;박복춘;박복춘
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This experimental study is aimed at evaluating the hydrodynamic performance of newly designed self-expandable graft stents under steady flow condition. Two graft stents with different coating materials and a bare TiNi metallic stent for comparison test were used in the experiment. Pressure variation and velocity distribution at the upstream and downstream of the stents were measured at flow rates of 5, 10, and 15 l/min, respectively. Pressure loss due to insertion of the stent increased with increasing flow rate exponentially as expected. At a flow rate of 15 l/min, pressure loss of Polyure-thane(PU)-coated graft stent was 6 times higher than that of TiNi metallic stent, while the pressure loss of a porous Polytetrafluoroethylene(PTFE)-coated graft stent was comparable to a bare TiNi metallic stent. Velocity profiles of the porous PTFE-coated graft stent were similar to those of a bare TiNi metallic stent regardless of flow rate. Furthermore, the velocity profile of PU-coated graft stent revealed an asymmetrical and relatively low central velocity at a higher flow rate than 10 1/min, expecially, where the effects resulted in increases of wall shear stress and normal stress. The worse hydrodynamic behavior of PU-coated graft stent than the other two stents might be attributed to formation of folds due to poor flexibility of coated material when inserting the graft stent into the pipe with a more smaller size, which later gave rise non-symmetry of flow area, increase of surface roughness and jet flow via the crevice between the stent and cylinder wall.

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF

Sensor Fusion of Localization using Unscented Kalman Filter (Unscented Kalman filter를 이용한 위치측정 센서융합)

  • Lee, Jun-Ha;Jung, Kyung-Hoon;Kim, Jung-Min;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.667-672
    • /
    • 2011
  • This paper presents to study the sensor fusion of positioning sensors using UKF(unscented Kalman filter) for positioning accuracy improvement of AGV(automatic guided vehicle). The major guidance systems for AGV are wired guidance and magnetic guidance system. Because they have high accuracy and fast response time, they are used in most of the FMS(flexible manufacturing system). However, they had weaknesses that are high maintenance cost and difficult of existing path modification. they are being changed to the laser navigation in recent years because of those problems. The laser navigation is global positioning sensor using reflecters on the wall, and it have high accuracy and easy to modify the path. However, its response time is slow and it is influenced easily by disturbance. In this paper, we propose the sensor fusion method of the laser navigation and local sensors using UKF. The proposed method is improvement method of accuracy through error analysis of sensors. For experiments, we used the axle-driven forklift AGV and compared the positioning results of the proposed method with positioning results of the laser navigation. In experimental result, we verified that the proposed method can improve positioning accuracy about 16%.

Millimeter-wave waveguide transducer using extended E-plane probe (연장된 E-plane 프로브를 이용한 밀리미터파 도파관 변환기)

  • Park, Woojin;Choe, Wonseok;Lee, Kookjoo;Kwon, Junbeom;Jeong, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, a low-loss wideband waveguide transducer is proposed for millimeter-wave communication and radar applications. A conventional E-plane probe transducer is generally designed using thin and flexible substrate at millimeter-wave frequencies, considering the very small waveguide size. However, it results in serious performance degradation caused by the bending of the substrate. In order to alleviate this problem and provide a reliable performance, we propose an extended E-plane probe transducer where the probe substrate is extended to and fix ed in the slit area formed in the waveguide wall. It is fabricated using $127{\mu}m$-thick substrate with dielectric constant of 2.2. The measurement in the back-to-hack configuration shows the excellent insertion loss of 1.35 dB (${\pm}0.35dB$) including the loss of 3 cm-long thru waveguide and return loss better than 13.8 dB over entire W-band (75-110 GHz). Therefore, it can be effectively applied for millimeter-wave high-speed communications and high-sensitivity radars.

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF