• 제목/요약/키워드: 유연 매니퓰레이터

검색결과 55건 처리시간 0.019초

외란 추정기를 이용한 유연 매니퓰레이터의 선단 위치제어 (Tip Position Control of Flexible Manipulator Using Disturbance Estimator)

  • 김상열;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.219-224
    • /
    • 2001
  • An accurate tip position control of a single-link flexible manipulator subjected to torque disturbance is achieved by utilizing so called sliding mode controller with disturbance estimation (SMCDE). After formulating the governing equation of motion in the state 1pace representation, a stable sliding surface is designed via the LQR method. The SMCDE is then synthesized by integrating equivalent sliding mode controller with the disturbance estimator which is featured by an integrated average value of the imposed disturbance over a certain sampling period. The regulating tip motion of the flexible manipulator is evaluated by employing the proposed SMCDE.

  • PDF

구속받는 3차원 유연 매니퓰레이터의 컴플라이언스 해석 (Compliance Analysis of Constrained Spatial Flexible Manipulators)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.91-96
    • /
    • 2006
  • The aim of this paper is to clarify the structural compliance of the constrained spatial flexible manipulator and to develop the force control by using the compliance of the links. Using the dependency of elastic deflections of links on contact force, vibrations for constrained vertical motion have been suppressed successfully by controlling the position of end-effector. However, for constrained horizontal motion, the vibrations cannot be suppressed by only controlling position of end-effector. We present the experimental results for constrained vertical motion, and constrained horizontal motion. Finally, a comparison between these results is presented to show the validity of link compliance.

구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구 (A Study on End-effector Friction of Constrained Spatial Flexible Manipulator)

  • 김진수
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

유사 역행렬을 이용한 여유자유도 3차원 유연 매니퓰레이터의 위치 및 진동제어 (Position and Vibration Control of a Spatial Redundant Flexible Manipulator by using Pseudo-inverse of Jacobian)

  • 김진수
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.66-72
    • /
    • 2001
  • In this paper, by using pseudo-inverse matrix of the spatial redundant flexible manipulators, a position control method and its effect in vibration suppression was presented. Vibration suppression control was developed using lumped mass spring model of the flexible manipulators. With 2 elastic links and 7 rotory joint manipulator ADAM, (1)position control for no redundancy, and (2)position control for one redundant DOF(degree of freedom) were tested. The objective of this experiment is to show the effect of position control, using pseudo-inverse matrix. toward the improvement of operation, and at the same time, to reduce the vibration of the link and the magnitude of the joint torque.

  • PDF

유연 힌지를 이용한 초정밀 3자유도 병렬 매니퓰레이터 개발 (Development of 3-DOF Parallel Manipulator Using Flexure Hinge)

  • 신동익;김영수;서승환;한창수;최두선;황경현
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.127-133
    • /
    • 2009
  • We present a $3-{\underline{P}}RS$ compliant parallel manipulator actuated by PZTs. The motion ranges are $400-{\mu}m$ translation to the z-direction and 5.7-mrad rotation about any axis on the x-y plane. A mechanical amplifier whose advantage is approximately 5.5 is designed and integrated with flexure revolute and spherical joints in a monolithic way. We evaluated the performance of the system: kinematic and dynamic characteristics. In kinematic point of view, the flexures play the roles of conventional mechanism but any nonlinearity such as dead-zone and backlash, which make it possible to achieve the steady-state resolution less than $0.1{\mu}m$. The system shows resonance near 86 Hz with high magnitude and, therefore, poor transient response. But the settling is faster when the flexures are strained higher.

구속받는 유연 매니플레이터의 능동적 컴플라이언스 제어 (Active Compliance Control of Constrained Flexible Manipulators)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2003
  • In this paper, we discuss the control scheme on active compliance control of flexible manipulators. The active compliance control scheme is extended from the scheme for rigid manipulators. To illustrate the validity of the proposed control scheme, we show experimental results for the case when the end-effector is not moving and when it is moving while applying force. Although flexible manipulators show some problems of stability yet it is clear from these results that flexible manipulators are more effective to reduce damage of environment because of link flexibility than rigid ones.

모델링 오차를 갖는 유연 링크 로봇 최적 제어 (Optimal Control of a Flexible Link Robot with Modelling Errors)

  • 한기봉;이시복
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.791-800
    • /
    • 1996
  • Linear LQG controller has been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the model upon which the controller is designed. In this study, the flexible modes of the link manipulator are considered to have uncertain parameters, which can be represented by random variable and these parameters are reflected on the weighting of performance. In this method, the exact modelling for the flexible modes is not necessary. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance and the stability-robustness of the proposed controller reaches reasonably the one based on the full model.

  • PDF

유연한 로봇 팔의 제어 방법 (control of a Flexible Robot Manipulator)

  • 박정일;박종국
    • 한국통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.183-193
    • /
    • 1994
  • 본 논문에서는 가정모드(assumed mode) 방법과 Lagrange 방식을 이용하여 유연성 로봇 매니퓰레이터의 동력학 방정식을 구하였으며, 조인트 구동기를 포함한 유연성 로봇 매니플레이터에 대한 제어기를 설계를 하였다. 제어기는 매개변수 추정부와 적응제어기로 구성하였으며, 매개변수 추정부는 RLS알고리즘을 이용하여 ARMA예측모델의 매개변수를 추정하도록 하였다. 적응제어기는 기준모델(reference)과 최소예측오차제어기(minimum prediction controller)로 구성하였다.

  • PDF

유연 링크 로봇의 특이섭동모델 최적제어 (Optimal control of a flexible robot arm using singular perturbation model)

  • 한기봉;이시복
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.62-68
    • /
    • 1996
  • Linear controllers, such as LQG/LTR controller, have been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the linearized model upon which the controller is designed. In this study, singular perturbation model is tested in designing a LQG/LTR controller for a flexible link manipulator. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance of the proposed controller reaches reasonably to the one based on the full model.

  • PDF