• 제목/요약/키워드: 유연한 전자소자

검색결과 147건 처리시간 0.024초

솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화 (Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer)

  • 김진희;서윤경;한주원;오지윤;김용현
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.275-279
    • /
    • 2015
  • 전도성 고분자인 poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS)는 우수한 전기 전도도와 광투과도, 유연성을 가지고 있기 때문에 유기태양전지와 유기발광소자의 투명전극으로서 많은 각광을 받고 있다. PEDOT : PSS의 전기 전도도는 솔벤트를 도핑함에 따라 큰 폭으로 증가한다는 사실은 잘 알려져 있다. 본 연구에서는 다양한 솔벤트의 도핑과 솔벤트 후처리 공정에 따른 PEDOT : PSS 박막의 전기 전도도와 구조적 특성 변화를 연구하였다. 솔벤트 도핑으로 PEDOT : PSS의 전도도는 884 S/cm까지 증가하였고, 후처리 공정을 통해서 1131 S/cm의 전도도 값을 얻을 수 있었다. 이러한 전도도의 증가는 PSS 물질이 빠져나가거나 구조적인 재배열에 따른 전도성 PEDOT 입자의 접촉 면적이 증가함에 따른 것으로 사료되고, 광학적인 방법으로 PSS의 추출을 관찰하였다. 솔벤트 후처리 공정은 PEDOT : PSS 박막의 전도도를 향상하는 매우 효과적인 방법으로 확인되었고, 저가형 플렉서블 유기전자소자의 투명전극으로써의 사용이 적합할 것으로 예상된다.

전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용 (A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes)

  • 임소은;김소연;김세열;김선주;김중현
    • 공업화학
    • /
    • 제26권6호
    • /
    • pp.640-647
    • /
    • 2015
  • 투명 전극의 응용분야가 확대되고 시장의 규모가 커짐에 따라 기존 투명 전극 재료인 ITO (Indium Tin Oxide)를 대체할 차세대 투명전극의 개발에 관심이 집중되고 있다. 다양한 후보군 중에서도 대표적인 전도성 고분자인 PEDOT : PSS [poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate)]는 기계적 유연성을 갖고 있으면서도 소재와 공정 상의 가격 경쟁력이 크기 때문에 미래 소자 구현을 위한 투명전극 재료로 주목을 받고 있으며, 현재 PEDOT : PSS의 전기전도도 수준을 ITO나 금속의 수준으로 향상시키기 위해 다양한 화학적/물리적 처리를 통한 기능성 향상에 많은 연구가 진행 중이다. 본 총설에서는 전도성 고분자의 전기 전도도를 향상시키기 위한 다양한 공정 기술에 대한 연구 현황을 짚어보고자 한다. 대표적으로 유기용매, 이온성 액체, 계면활성제 등과 같은 첨가제와 박막에 대한 산 처리 공정, 물리적 인장을 통한 전기전도도 향상 연구를 들 수 있다. 또한 이러한 공정을 적용하여 전도성 고분자 투명 전극을 전자 및 에너지 소자에 응용한 사례도 간략히 소개하고자 한다.

PECVD를 이용한 2차원 이황화몰리브데넘 박막의 저온합성법 개발

  • 김형우;안치성;;이창구;김태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.274-274
    • /
    • 2014
  • 금속칼코게나이드 화합물중 하나인 $MoS_2$는 초저 마찰계수의 금속성 윤활제로 널리 사용되고 있으며 흑연과 비슷한 판상 구조를 지니고 있어 기계적 박리법을 통한 그래핀의 발견 이후 2차원 박막 합성법에 대한 활발한 연구가 진행되고 있다. 최근 다양한 응용이 진행 중인 그래핀의 경우 높은 전자이동도, 기계적 강도, 유연성, 열전도도 등 뛰어난 물리적 특성을 지니고 있으나 zero-bandgap으로 인한 낮은 on/off ratio는 thin film transistor (TFT), 논리회로(logic circuit) 등 반도체 소자 응용에 한계가 있다. 하지만 $MoS_2$는 벌크상태에서 약 1.2 eV의 indirect band-gap을 지닌 반면 단일층의 경우 1.8 eV의 direct-bandgap을 나타내고 있다. 또한 단일층 $MoS_2$를 이용하여 $HfO_2/MoS_2/SiO_2$ 구조의 트랜지스터를 제작하였을 때 $200cm^2/v^{-1}s^{-1}$의 높은 mobility와 $10^8$ 이상의 on/off ratio 나타낸다는 연구가 보고되어 있어 박막형 트랜지스터 응용을 위한 신소재로 주목을 받고 있다. 한편 2차원 $MoS_2$ 박막을 합성하기 위한 대표적인 방법인 기계적 박리법의 경우 고품질의 단일층 $MoS_2$ 성장이 가능하지만 대면적 합성에 한계를 지니고 있으며 화학기상증착법(CVD)의 경우 공정 gas의 분해를 위한 높은 온도가 요구되므로 박막형 투명 트랜지스터 응용을 위한 플라스틱 기판으로의 in-situ 성장이 어렵기 때문에 이를 보완할 수 있는 $MoS_2$ 박막 합성 공정 개발이 필요하다. 특히 Plasma enhanced chemical vapor deposition (PECVD) 방법은 공정 gas가 전기적 에너지로 분해되어 chamber 내부에서 cold-plasma 형태로 존 재하기 때문에 박막의 저온성장 및 대면적 합성이 가능하며 고진공을 바탕으로 합성 중 발생하는 오염 요소를 효과적으로 제어할 수 있다. 본 연구에서는PECVD를 이용하여 plasma power, 공정압력, 공정 gas의 유량 등 다양한 공정 변수를 조절함으로써 저온, 저압 조건하에서의 $MoS_2$ 박막 성장 가능성을 확인하였으며 전구체로는 Mo 금속과 $H_2S$ gas를 사용하였다. 또한 향후 flexible 소자 응용을 위한 플라스틱 기판의 녹는점을 고려하여 공정 온도는 $300^{\circ}C$ 이하로 설정하였으며 합성된 $MoS_2$ 박막의 두께 및 화학적 구성은 Raman spectroscopy를 이용하여 확인 하였다. 공정온도 $200^{\circ}C$$150^{\circ}C$에서 성장한 $MoS_2$ 박막의 Raman peak의 경우 상대적으로 낮은 공정온도로 인하여 Mo와 H2S의 화학적 결합이 감소된 것을 관찰할 수 있었고 $300^{\circ}C$의 경우 약 $26{\sim}27cm^{-1}$의 Raman peak 간격을 통해 5~6층의 $MoS_2$ 박막이 형성 된 것을 확인할 수 있었다.

  • PDF

고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층 (Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors)

  • 이민정;이슬이;유재석;장미;양회창
    • 공업화학
    • /
    • 제24권3호
    • /
    • pp.219-226
    • /
    • 2013
  • 차세대 전자 디스플레이 관련 제품의 휴대편리성, 유연성, 경량화, 대형화 등의 요구조건을 확보할 수 있는 유기반도체 소재기반 소프트 일렉트로닉스에 많은 관심이 모아지고 있다. 소프트 일렉트로닉스의 응용분야로는 전자 신문, 전자 책, 스마트카드, RFID 태그, 태양전지, 휴대용 컴퓨터, 센서, 메모리 등이 있으며, 핵심소자는 유기 전계효과 트랜지스터(organic field-effect transistor, OFET)이다. OFET의 고성능화를 위해서는 유기반도체, 절연체, 전극 구성소재들이 최적화 구조를 형성하도록 적층되어야 한다. 필름형성화 과정에서 대부분의 유기반도체 소재는 결합력이 약한 van der Waals 결합으로 자기조립 결정구조를 형성하므로, 이들의 결정성 필름구조는 주위 환경(공정변수 및 기질특성)에 의해 크게 달라진다. 특히 기질의 표면 에너지(surface energy) 및 표면 거칠기(surface roughness)에 따라 유기반도체 박막 내 결정 구조 및 배향 등은 크게 달라져, OFET의 전기적 특성에 큰 차이를 미친다. 유기친화적 절연층 소재 및 표면개질화는 전하이동에 유리하도록 용액 및 증착공정 유기반도체 박막의 결정구조 및 배향을 유도시켜 OFET의 전기적 성능을 향상시킬 수 있다.

페시베이션 박막이 녹색 유기발광다이오드의 광학특성에 미치는 영향 (Effects of Passivation Thin Films on the Optical Properties of the Green Organic Light Emitting Diodes)

  • 문세찬;이상희;박병민;피재호;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제23권1호
    • /
    • pp.11-15
    • /
    • 2016
  • 유기발광다이오드(orgianic light emitting diodes, OLEDs)는 대형 유연 디스플레이와 발광원으로서 사물인터넷 (IoT)의 하드웨어 기기 등 다양한 분야에서 연구가 진행되고 있다. 그러나 낮은 일함수의 금속 및 쉽게 반응하는 유기재료 자체의 특성으로 인하여 외부환경에 매우 취약한 단점을 가지고 있으며 특히, 수분과 산소에 민감하여 외부와의 접촉 시 성능이 급속도로 저하되는 현상을 나타내게 된다. 이를 방지하기 위해 PVD, CVD, ALD 와 같은 방법으로 보호막 형성 연구를 진행 중에 있지만 복잡한 공정 및 높은 비용의 문제점 등이 있다. 그러므로 외부 환경에 의한 성능 저하를 차단해주는 저렴하고 단순한 공정의 페시베이션(passivation) 박막 기술 개발이 매우 중요하다. 본 연구에서는 유기발광다이오드의 수명 향상을 위하여 스핀코팅(spin-coating) 방법으로 녹색 유기발광다이오드 소자 위에 조성비에 따른 페시베이션 박막을 형성한 후 녹색 유기발광다이오드의 휘도특성 변화를 조사하였다. 페시베이션 용액은 poly vinyl alcohol (PVA)를 기반으로 sodium alginate (SA)를 0, 10, 20, 40 wt%의 조성비로 제조하였으며, 40 wt%의 조성비에서 가장 좋은 배리어 보호 특성을 나타내었다. 최종적으로 PVA + SA 용액의 최적화된 페시베이션 보호막을 제작할 수 있었다.

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 (Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing)

  • 강영림;박태완;박은수;이정훈;왕제필;박운익
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2020
  • 지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.

그래핀 표면 접착력을 이용한 전주도금 공정

  • 노호균;박미나;이승민;배수강;김태욱;하준석;이상현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2016
  • 기원전 5000년 이집트에서부터 시작된 도금은 시간이 지남에 따라 점점 발전하여, 1900년대에 들어 전기를 이용한 도금공정이 개발되었고, 현재 뿌리산업으로써 각종 제조업에 널리 이용되고 있다. 도금 공정은 금속을 부식으로부터 보호하고, 제품의 심미성과 기능성, 생산성 등을 높이기 위해 주로 이용된다. 전주도금 공정은 완벽하게 동일한 형태의 생산품을 다량으로 제작 할 수 있기 때문에, 그 높은 생산성으로 주목 받고 있다. 특히, 나노/마이크로 크기의 정밀 소자 등을 가공하는 차세대 기술인 LIGA공정과 접목이 가능하다는 장점이 있다. 몰드를 이용하여 복제하는 방식인 전주 도금은 도금공정이 끝난 후 몰드와 완성된 제품을 분리해내는 추가공정이 필연적으로 발생하게 되는데, 둘 사이의 접착력을 낮추기 위하여 몰드의 표면에 이형박리제를 도포하게 된다. 이형박리제로는 전기가 잘 흐르면서 접착력이 낮은 이산화 셀렌이나 중크롬산이 주로 이용되지만, 원활한 박리를 위해서는 그 두께가 30 um 이상 확보되어야 하기 때문에 정밀한 미세구조 전주도금이 어렵다는 문제점이 있다. 또한 이와 같은 화학 약품들은 매우 유독하기 때문에 추가적인 폐수 처리 공정이 필요하며, 작업자의 안전을 위협하고 심각한 환경 오염을 초래한다는 추가적인 문제가 발생한다. 따라서, 매우 얇고 친 환경적이며 안전한 전주도금 이형박리제에 대한 연구가 요구되고 있다. 본 연구에서는 전주도금 몰드로 사용한 구리의 표면에 TCVD를 이용하여 단일 층 그래핀을 성장시킨 후, 그래핀이 코팅된 몰드에 구리를 전주도금하여 박리하였다. 박리 후 그래핀은 몰드에 손상 없이 남아있는 것을 Raman microscopy를 통해서 확인하였고, 몰드와 그래핀 사이의 접착력 (약 $0.71J/m^2$)에 비해 그래핀과 전주도금 샘플간에 낮은 접착력 (약 $0.52J/m^2$)을 갖는 것을 확인하였다. 이와 같이 낮은 접착력을 통해 박리 시 표면구조의 손상 없이 정밀한 구조의 미세 패턴구조를 형성할 수 있었다. 전주도금을 이용한 전극 형성과 고분자와의 융합을 통해 유연기판을 제작하여 bending 실험을 진행하였다. $90^{\circ}$의 bending 각도로 10000회 이하에서는 저항의 변화가 없었고, LED chip을 mounting한 후 곡률반경 4.5 mm까지 bending을 진행하여도 이상 없이 LED가 발광하는 것을 확인하였다. 위와 같은 전주도금 공정을 이용하여 고집적 전자기기, 광학기기, 센서기기 등의 다양한 어플리케이션의 부품제조에 활용될 수 있을 것으로 기대한다.

  • PDF