• 제목/요약/키워드: 유압 하이브리드 차량

검색결과 11건 처리시간 0.024초

동력 추적 기법을 활용한 직렬형 유압 하이브리드 차량의 제어 방식에 관한 연구 (A study on the control of series hydraulic hybrid vehicle using power follower strategy)

  • 권우상;오주영;송창섭
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.49-55
    • /
    • 2010
  • A series hydraulic hybrid vehicle(SHHV) concept has been explored as a potential pathway to an ultra-efficient city vehicle. Improvements in SHHV fuel economy with reduced emissions strongly depend on their supervisory control strategy. Thermostatic control is simple and reliable but it's cause of frequent engine on-off. Therefore, power follower strategy is presented. In this paper, thermostatic control strategy and power follower strategy is compared for the SHHV model developed using AMESim.

  • PDF

42V 마일드 하이브리드 자동차용 에너지 관리장치 개발에 관한 연구 (Development of Energy Management System for 42V Mild-Hybrid Vehicle)

  • 이백행;신동현;송현식;김병우;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.968-969
    • /
    • 2006
  • 환경 친화적인 자동차, 안전한 자동차, 편리하고 편안한 자동차 등에 대한 다양한 요구에 효과적으로 대응하기 위해 기존의 기계/유압식 자동차 부품들을 전기장치로 대체하기 위한 연구가 꾸준히 진행되고 있으며, 특히 반도체 기술의 발전에 의한 가격경쟁력 강화에 힘입어 신규부품 개발 분야를 중심으로 자동차 부품의 전기/전자화가 급격히 진행되고 있다. 이에 따라 자동차에서 사용되는 전기에너지의 소요도 지속적으로 증가하여 새로운 차량용 전원체계에 대한 연구, 개발의 필요성이 대두되었고, 1990년대 중반 미국의 MIT/Industry Consortium 등을 중심으로 선행연구가 진행되어 자동차용 42V 전원체계가 새로운 대안으로 제시되었으며, 아울러 연비개선을 위한 마일드 하이브리드 기능의 채용이 검토되었다. 본 논문에서는 42V 전원체계 및 마일드 하이브리드 시스템 성능 구현에 핵심적인 역할을 하는 에너지 저장시스템에 관해 소개하고, 마일드 하이브리드 운용에 적합한 에너지 관리장치 개발에 대해 간략히 소개하고자 한다.

  • PDF

가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구 (A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor)

  • 조용래;안경관
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.

하이브리드 승용차용 전자식 무단변속기의 개발 (Development of Electronically Controlled CVT for Hybrid Passenger Car)

  • 최득환
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.75-81
    • /
    • 1999
  • In this paper, the details of electronically controlled CVT is described , which Kia Motor company recently developed in prototype form for hybrid passenger car. This transmission has two input shafts, one for engine and the other for traction motor. The shaft for traction motor is located at rear side which is extended from primary pulley shaft and connected to traction motor through adapter gear box. Adopting two input system, various driving mode is available such as motor alone driving in hybrid vehicle application. As far as electrohydraulic system concerned , this transmission uses two bleed type variable force solenoids for line pressure and ratio control, and one on-off solenoid for clutch control. Another feature for this transmission is that oil pump for transmission is separate from CVT for supplying oil pressure even at vehicle standstill.

  • PDF

대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발 (Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System)

  • 유춘식;최규재
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발 (Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles)

  • 여훈;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구 (A Study on the Energy Saving Hydraulic System Using Constant Pressure System)

  • 조용래;윤종일;윤주현;이민수;조우근;윤홍수;안경관
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System)

  • 조용래;안경관;윤주현;이민수;조우근;윤홍수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF