• Title/Summary/Keyword: 유압 서보 제어

Search Result 137, Processing Time 0.026 seconds

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control (압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어)

  • Lee C.D.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

Position Control of Electro-Hydraulic Servo System Using $H_\infty$ ($H_\infty$제어에 의한 전기${\cdot}$유압 서보계의 위치제어)

  • Park K. S.;Kim D. T.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • In this paper, a controller design procedure for an electro-hydraulic positioning systems have developed using $H_\infty$ control theory. The generalized models and weighting functions for a multiplicative uncertainty modelling error is presented along with $H_\infty$ controller designs in order to investigate the robust stability and performance. The multiplicative uncertainty case is specifically suited for the design of an electro-hydraulic positioning control systems using $H_\infty$ control.

  • PDF

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

A Study on Improvement of Structural Sliding Method Using AC Induction Motor Servo Control Device (AC유도전동기 서보제어장치를 이용한 구조물 슬라이딩공법)

  • Cho, Young-nam;Han, Jae-woong;Jang, Won-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.235-237
    • /
    • 2018
  • In spite of the superiority of the sliding method in the building construction field, the AC induction motor servo control device is used as the power control technology in the building construction field in order to improve the problems of the hydraulic power control method, thereby contributing to the precision control and the productivity improvement. Based on Induction Motor Servo Controller, we proposed the development of a mobile sliding method using a complex combination of PC and MITY (MS) Servo.

  • PDF

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Error Evaluation of Linearized Equation for a Servovalve in Hydraulic Control Systems (유압 제어계에서 서보밸브 선형화 방정식의 오차 평가)

  • Kim, Tae-Hyung;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.779-788
    • /
    • 2003
  • This study evaluates the approximation errors of the existing linearized equation for a servovalve nonlinear flowrate characteristic. At first, the errors are evaluated on flowrate/pressure characteristics diagrams. Subsequently, they are investigated with time response simulation results for several hydraulic control systems. To enable systematic evaluation of computational error, the authors propose three kinds of equations with restructured forms of the existing linearized equation. As results of the evaluations, it is ascertained that comparatively good computational accuracy can be achieved with the existing linearized equation when both an operating point for the linearized equation and operating range of the hydraulic system stay near the flowrate axis of the flowrate/pressure characteristics diagram. In addition, the results show that comparatively big computational error may occur when operating range of a hydraulic system stay apart from the flowrate axis of the flowrate/pressure characteristics diagram.

A New Linearized Equation for Modelling a Servovalve in Hydraulic Control Systems (유압 제어계에서 서보밸브 모델링을 위한 새로운 선형화 방정식의 제안)

  • Kim, Tae-Hyung;Lee, Ill-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.789-797
    • /
    • 2003
  • In the procedure of the hydraulic control system design, a linearized approximate equation described by the first order terms of Taylor series has been widely used. Such a linearized equation is effective just near the operating point, However, pressure and flowrate in actual hydraulic systems are usually not confined near an operating point. This study suggests a new linearized flow equation for a servovalve as a modified form of the conventional linearized flow equation. Subsequently, a procedure to determine effective operating point for the new linearized equation is proposed. From the evaluations of time responses and frequency responses obtained from simulations for a hydraulic control system, the effectiveness of the new linearized equation and the procedure to determine effective operating point is confirmed.

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF