• Title/Summary/Keyword: 유압로봇

Search Result 116, Processing Time 0.034 seconds

The Implementation of State Observer for Position Control of Electrohydraulic Servo Systema (유압서보 시스템의 위치제어를 위한 관측제어기의 실현화 연구)

  • 이동권;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.673-677
    • /
    • 1986
  • This paper deals with the state observer-controller which observes unmeasurable state variables of the system and then uses the estimated values as feedback signals. The linearized model is deduced from the nonlinear electrohydraulic servo system. The 4th order analog linear observer-controller and the 2nd order digital one are modelled and implemented using OP amplifiers and IBM PC/XT, respectively. The two observer are experimentally used in the control of an electrohydraulic system. The results are satisfactory in estimation performance and in tracking performance to command signal.

  • PDF

보급형 ABS(Anti-Lock Brake System) 개발

  • 김중배;유장열;이병조;채경선;김상국
    • ICROS
    • /
    • v.2 no.1
    • /
    • pp.18-24
    • /
    • 1996
  • 본 연구에서는 향후 초소형, 초저가의 ABS가 개발되어 보편적으로 차량에 장착될 것을 대비해 독자적으로 설계, 제작된 ABS에 대해 제시하고자 한다. 개발의 목표는 유압 모듈레이터의 핵심 부품인 솔레노이드 밸브의 개발과 장착성이 우수한 소형의 PCB(Printed Circuit Board)형의 ECU(Electronic Control Unit)이다. 특히 개발된 밸브의 경우 현재 범용적으로 많이 사용되는 2포지션 2웨이 밸브가 아닌 2포지션 3웨이 밸브이며, 이로써 1채널당 브레이크 라인 압력을 제어하기 위해 1개의 밸브만 소요된다.

  • PDF

Remote control scheme for cranes using electro-hydraulic servo positioner with coaxial rotary spool (동축 회전형 스풀을 가진 전기 유압 서어보 위치 제어기를 이용한 크레인의 원격제어)

  • 김홍집;김경진;현웅근;서일홍;오상록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.693-697
    • /
    • 1990
  • A position control system is developed for an electro-hydraulic servo actuator with coaxial rotary spool, where the actuator is controlled by stepping motor. The position control system is utilized to develop the wireless remotely controlled crane system. And remote engine control system is also developed. Finally, to show the validity of this system, some experimental results and field test results am presented.

  • PDF

A study on the development of the engine/hydraulic pump control system of excavator (굴삭기의 엔진 및 유압펌프 제어시스템의 개발에 관한 연구)

  • 하석홍;윤영환;이일영;조겸래;이진걸;황봉동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.675-680
    • /
    • 1990
  • According to the recent increase of demands for multi-function and economics on hydraulic excavator, it is required that excavator should have simple operation, higher and operational efficiency. However, it is difficulty for current hydraulic system to satisfy demands fully. This study shows that new control system improves power transmission efficiency, work capability of engine and hydraulic system of current excavator.

  • PDF

Nonlinear digital simulation for the analysis of a hydraulic servo system (비선형 디지탈 시뮬레이션에 의한 유압서보 시스템 해석)

  • 이상열;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.346-351
    • /
    • 1987
  • In this study, digital simulation with nonlinear modeling is carried out to analyse the performance of a hydraulic servomotor system developed for the position control of a large inertia. Nonlinear element, such as nonlinear pressure flow relationships of servovalve, valve spool limits, nonlinear friction, and backlash and resilience of gear system are included in the simulation along with the dynamic characteristics of variable delivery pump compensation mechanism. Simulation results are compared with experimental results for both step and sinusoidal inputs. Independent of input magnitude, both results are in good agreement with minor differences in detail.

  • PDF

Auto tuning of the hydraulic servo control system using fuzzy set theory (퍼지 집합 이론을 응용한 유압 서보 제어계의 자동 이득 조절)

  • 이교일;나종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.352-357
    • /
    • 1987
  • The Auto Tuning Controller is designed using Fuzzy set theory. And to verify its validity it is Applied to the Auto Tuner of hydraulic Control System. Fuzzy Tuning Procedures are written by linguistic model and translated into C language formation by preprocessor. Then it is executed with state feedback controller in real time, Fuzzy Logic Controller adjusts state feedback gain by proper tuning logic in each step to satisfy the desired maximum overshoot and settling time.

  • PDF

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

Accurate Position Control of Hydraulic Motor Using NNGPC (NNGPC를 이용한 유압모터의 고정도 위치제어)

  • 박동재;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.143-143
    • /
    • 2000
  • A neural net based generalized predictive control(NNGPC) is presented for a hydraulic servo position control system. The proposed scheme employs generalized predictive control, where the future output being generated from the output of artificial neural networks. The proposed NNGPC does not require an accurate mathematical model for the nonlinear hydraulic system and takes less calculation time than GPC algorithm if the teaming of neural network is done. Simulation studies have been conducted on the position control of a hydraulic motor to validate and illustrate the proposed method.

  • PDF

Robust Control of Variable Hydraulic System using Multiple Fuzzy Rules (다수의 퍼지규칙을 이용한 가변유압시스템의 강건제어)

  • 양경춘;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.134-134
    • /
    • 2000
  • A switching control using multiple gains in the fuzzy rule is newly proposed for an abruptly changing hydraulic servo system. The proposed scheme employs fuzzy PID control, where modified input parameters are used, and LVQNN(Learning Vector Quantization Neural Network) as a switching controller (supervisor). Simulation and experimental studies have been carried out to validate and illustrate the proposed controller.

  • PDF