• Title/Summary/Keyword: 유압구동

Search Result 230, Processing Time 0.03 seconds

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

A Study on the Noise Reduction of Cabin in the Excavator (굴삭기 운전실 소음저감에 관한 연구)

  • 김추호;최두원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.89-93
    • /
    • 1995
  • 일반적으로 건설장비의 운전자 소음은 자동차와는 달리 주행 시 소음에 관한 것은 크게 문제되지 않는다. 다만 모든 작동부들이 유압력에 의해 구동되므로 유압 이음이 새롭게 대두되며, 엔진 사용조건 또한 자동차와는 상이하다. 그러나, 운전자가 느끼는 관점에서 운전실내에서 안락함의 요구는 점차로 강해지고 있을 뿐만 아니라 소비자들의 직접적인 구매 의욕과 직결된다. 이에 본 연구에서는 굴삭기 운전실에서 문제시 되는 부밍(Booming)소음에 대해 고찰하고, 구조 기인 소음(structure-borne noise)에 초점을 둔 실험적 기법의 도입으로 주 소음원을 규명하고 주요 인자들에 대한 기여도 분석을 통해 운전실 소음 저감을 구현하였다.

  • PDF

전기설비의 전기에너지 절약 운영기술⑽

  • 한국전력기술인협회
    • Electric Engineers Magazine
    • /
    • v.224 no.4
    • /
    • pp.40-47
    • /
    • 2001
  • 엘리베이터는 사용목적에 따라서 승용, 인하용, 화물용, 기타 특수용 등이 있고 구동방식은 직류전동기에 의한 것과 교류전동기에 의한 것 그리고 유압식이 있다.

  • PDF

Integrated Control Algorithm of Hydraulic Pump with Electric Motor to Improve Energy Efficiency of Electric Excavator (전기굴삭기 에너지 효율 향상을 위한 유압펌프-전동기 통합 제어 알고리즘)

  • Lee, Jeeho;Lee, Jihye;Lee, Hyeongcheol;Oh, Chang Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • An electric excavator consumes battery energy to drive an electric motor attached to a hydraulic pump to generate hydraulic power. In a conventional hydraulic excavator, the hydraulic pump is controlled by regulators, which are used to optimize the diesel engine efficiency. Because of a lack of battery energy capacity, an electric excavator controller should consider not only the electric motor efficiency but also the hydraulic pump efficiency. Thus, electric motor and hydraulic pump efficiency maps were constructed. An optimal operating map (OOM) was created based on the most efficient operating points under each input condition. An integrated control algorithm controlled the speed of the electric motor and displacement of the hydraulic pump according to the OOM. To confirm the utility of this algorithm, a model-in-the-loop simulator for the algorithm with an electric excavator was established. The simulation results showed that the integrated control algorithm improved the energy efficiency of an electric excavator.

An Experimental Research of Servo Valve Offset Correction Method of Hydraulic Actuator (유압식 구동장치의 서보밸브 오프셋 보정 방법에 관한 실험적 연구)

  • Ban, Joon Hyeok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.72-79
    • /
    • 2019
  • Despite the development of electronic components and microprocessors, hydraulic actuators are still being applied in various applications. In some applications, there is a desire to apply a hydraulic actuator with a relatively small position error to the system. Various studies have been conducted to reduce the position error of hydraulic actuators. In this paper, the position error of the hydraulic actuator when the hydraulic oil pressure is supplied is defined as the offset generated by the servo valve, and the method for correcting the servo valve offset has been studied. A method for compensating the servo valve offset was proposed and it was verified through experiments that the position error of the hydraulic actuator was reduced. We also compared the servo valve offset correction method and controller using the PID control and disturbance observer used to reduce the position error of the hydraulic actuator. No-load test and load test were performed to confirm the performance of the servo valve offset correction method. The results of the study were compared with those obtained by using the disturbance observer and PID control.

Pressure Control of Hydraulic Pump using SR Drive with Pressure Predict and Direct Torque Control Method (압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동)

  • Lee, Dong-Hee;Seok, Seung-Hun;Liang, Jianing;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Pressure control of hydraulic pump using SRM with pressure predictor and direct torque control method is presented in this paper. Nowadays, high efficiency and high performance motor drive is much interested in hydraulic pump system. But the hydraulic pump system has an inherent defect that its dynamic behavior causes by interaction between the sensor and hydraulic load. It will make low performance of whole system, even unstable and oscillatory. Proposed system integrates pressure predictor and direct instantaneous torque control (DITC). The pressure predictor includes Smith predictor, which is easy to improve unstable or long oscillation in traditional negative feedback control and popular PID control architectures. And DITC method can reduce inherent torque ripple of SRM, and develop smooth torque to load, which can increase stability and improve the torque response of SR drive. So high dynamic performance and stabilization can achieved proposed hydraulic system. At last, the proposed hydraulic system is verified by simulation and experimental results.

Constant Speed Control of Shaft Generating System Driven by Hydrostatic Transmission for Ship Use (유압구동식 선박용 축발전장치의 정속제어)

  • 정용길;이일영;양주호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2023-2032
    • /
    • 1993
  • This study suggests a new type shaft generating system driven by hydrostatic transmission suitable for small size vessels. Since the shaft generating system is affected ceaselessly by disturbances such as speed variation in pump driving speed and variation in external load, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study, a digital robust servo control algorithm is applied to the controller design. By the experiment and the numerical computation, the frequency variation characteristics of the generating system under various disturbances are investigated. Conclusively, it is said that the shaft generating system proposed in this study shows excellent control performances.