DOI QR코드

DOI QR Code

Integrated Control Algorithm of Hydraulic Pump with Electric Motor to Improve Energy Efficiency of Electric Excavator

전기굴삭기 에너지 효율 향상을 위한 유압펌프-전동기 통합 제어 알고리즘

  • Lee, Jeeho (Dept. of Electric Engineering, Hanyang Univ.) ;
  • Lee, Jihye (Dept. of Electric Engineering, Hanyang Univ.) ;
  • Lee, Hyeongcheol (Division of Electrical and Biomedical Engineering, Hanyang Univ.) ;
  • Oh, Chang Eun (Construction Equipment Control Research Department, Hyundai Heavy Industries CO., Ltd.)
  • Received : 2014.04.06
  • Accepted : 2014.09.16
  • Published : 2015.02.01

Abstract

An electric excavator consumes battery energy to drive an electric motor attached to a hydraulic pump to generate hydraulic power. In a conventional hydraulic excavator, the hydraulic pump is controlled by regulators, which are used to optimize the diesel engine efficiency. Because of a lack of battery energy capacity, an electric excavator controller should consider not only the electric motor efficiency but also the hydraulic pump efficiency. Thus, electric motor and hydraulic pump efficiency maps were constructed. An optimal operating map (OOM) was created based on the most efficient operating points under each input condition. An integrated control algorithm controlled the speed of the electric motor and displacement of the hydraulic pump according to the OOM. To confirm the utility of this algorithm, a model-in-the-loop simulator for the algorithm with an electric excavator was established. The simulation results showed that the integrated control algorithm improved the energy efficiency of an electric excavator.

전기굴삭기는 배터리에 저장된 에너지로 전동기-유압펌프를 구동해서 유압 에너지를 생성하고 이를 작업에 활용한다. 기존 유압굴삭기의 유압펌프는 디젤 엔진의 운전 효율에 최적화된 레귤레이터에 의해 제어되고, 유압펌프 자체의 효율은 고려되지 않았다. 전기굴삭기는 배터리를 에너지원으로 사용하기 때문에 전동기의 효율뿐 아니라 유압펌프의 효율을 함께 고려한 제어가 요구된다. 통합 제어를 위해서 유압펌프와 전동기의 출력과 효율 특성을 분석하여 효율맵을 작성하였고, 이를 바탕으로 최적동작맵을 구성하고 통합 제어 알고리즘을 개발했다. 알고리즘의 효과를 확인하기 위해 전기굴삭기 MILS 를 구성해서 통합 제어 알고리즘을 적용했다. 굴삭기 작업 시뮬레이션 결과는 통합 제어 알고리즘이 시스템 효율을 향상 시켰음을 보여준다.

Keywords

References

  1. Salmasi, F. R., 2007, "Control Strategies for Hybrid Electric Vehicles : Evolution, Classification, Comparison, and Future Trends" IEEE Trans. Veh. Technol, Vol. 56, No. 5, pp. 2393-2404. https://doi.org/10.1109/TVT.2007.899933
  2. Chau, K. T., Wong, Y. S., 2002, "Overview of Power Management in Hybrid Electric Vehicles" Energy Conversion and Management, Vol. 43, pp. 1953-1968. https://doi.org/10.1016/S0196-8904(01)00148-0
  3. Walsh, M. P., Branco, G. M., Ryan, J., Linke, R. R. A., Romano, J. and Martins, M. H. R. B., 2005, "Clean Diesels : The Key to Clean Air in Sao Paulo" SAE paper 2005-01-2215.
  4. Bacher, C. and Hohenberg, G., 2011, "With Electricity to ZEV? Potential and Limitations of Electric Mobility," SAE Int. J. Engines, Vol. 4, No. 2, pp. 2608-2621. https://doi.org/10.4271/2011-37-0011
  5. Thounthong, P., Chunkag, V., Sethakul, P., Davat, B. and Hinaje, M., 2009, "Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device," IEEE Trans. Veh. Technol, VOL. 58, NO. 8, pp. 3892-3904 https://doi.org/10.1109/TVT.2009.2028571
  6. Jin, K. C., Park, T. H., Lee, J. H., Jung, Y. S., Kwon, Y. M. and Lee H. C., 2009, "The Establishment of Model in the Loop Simulation Environment for the Development of HCU in Hybrid Excavators," KSAE 2009 Annual Conference, pp. 2953-2960
  7. Lee, H. J., Sul, S. K., Kwak, S. Y. and Kim, S. I., 2010, "System Configuration and Control Strategy for Compound Type Hybrid Excavator with Ultra Capacitor," International Power Electronics Conference, pp. 820-826
  8. Kwon, T. S., Lee, S. W., Sul, S. K., Park, C. G., Kim, N. I., Kang, B. I. and Hong, M. S., 2010, "Power Control Algorithm for Hybrid Excavator With Supercapacitor," IEEE Trans. Industry Applications, Vol. 46, No. 4, pp. 1447-1455 https://doi.org/10.1109/TIA.2010.2049815
  9. Tan, L., Liu, S. J., Huang, Z. H. and Zuo, J. Y., 2013, "Design and Simulation of Hybrid Excavator Loading System," 4th Int. Conference on Digital Manufacturing & Automation, pp. 445-448
  10. Wang, D., Pan, S., Lin, X., Guan, C., 2008, "Design of Energy Unit for Hybrid Excavator Power Management," IEEE Vehicle Power and Propulsion Conference, DIO 10.1109/VPPC.2008.4677481
  11. Wang, H.M., Wang, Q. F., Hu, B. Z. and Feng, Q., 2013, "The Novel Hybrid Energy Storing Unit Design for Hybrid Excavator by the Effective Integration of Ultracapacitor and Battery," IEEE/ASME Int. Conference on Advanced Intelligent Mechatronics, pp. 1585-1590
  12. Lee, S. M., Lee, J. H., Lee, H. C. and Lee, S. H., 2013, "Modeling and Control of Plug-In Hybrid Excavator," IEEE IECON2013, pp. 4653 - 4659
  13. Kim, S., Oh, S.H. and Jung, J.Y., 1998, "A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump," J. KSTLE, Vol. 14, No. 4, pp. 15-22.
  14. Jung, D.S., Kim, H.E., Jeong, H.S., Kang, B.S., Lee, Y.B., Kim, J.K. and Kan, E.S., 2005, "Experimental Study on The Performance Estimation Efficiency Model of a Hydraulic Axial Piston Motors," Proceedings of the 6th JFPS International Symposium on Fluid Power, pp. 284-290.
  15. Data Sheet for K3VG112, Kawasaki Precision Machinery.
  16. Won, K. H., Lee, J. H., Oh, C. E. and Lee, H. C., 2012, "Modeling and Analysis of the Electric Drive System for Excavators," KSAE 2012 Annual Conference, pp. 2435-2441.

Cited by

  1. Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator vol.12, pp.3, 2015, https://doi.org/10.7839/ksfc.2015.12.3.052