• Title/Summary/Keyword: 유사 키워드

Search Result 315, Processing Time 0.023 seconds

Clustering of Web Objects with Similar Popularity Trends (유사한 인기도 추세를 갖는 웹 객체들의 클러스터링)

  • Loh, Woong-Kee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.485-494
    • /
    • 2008
  • Huge amounts of various web items such as keywords, images, and web pages are being made widely available on the Web. The popularities of such web items continuously change over time, and mining temporal patterns in popularities of web items is an important problem that is useful for several web applications. For example, the temporal patterns in popularities of search keywords help web search enterprises predict future popular keywords, enabling them to make price decisions when marketing search keywords to advertisers. However, presence of millions of web items makes it difficult to scale up previous techniques for this problem. This paper proposes an efficient method for mining temporal patterns in popularities of web items. We treat the popularities of web items as time-series, and propose gapmeasure to quantify the similarity between the popularities of two web items. To reduce the computation overhead for this measure, an efficient method using the Fast Fourier Transform (FFT) is presented. We assume that the popularities of web items are not necessarily following any probabilistic distribution or periodic. For finding clusters of web items with similar popularity trends, we propose to use a density-based clustering algorithm based on the gap measure. Our experiments using the popularity trends of search keywords obtained from the Google Trends web site illustrate the scalability and usefulness of the proposed approach in real-world applications.

Question Retrieval using Deep Semantic Matching for Community Question Answering (심층적 의미 매칭을 이용한 cQA 시스템 질문 검색)

  • Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF

Deep Learning Based Semantic Similarity for Korean Legal Field (딥러닝을 이용한 법률 분야 한국어 의미 유사판단에 관한 연구)

  • Kim, Sung Won;Park, Gwang Ryeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • Keyword-oriented search methods are mainly used as data search methods, but this is not suitable as a search method in the legal field where professional terms are widely used. In response, this paper proposes an effective data search method in the legal field. We describe embedding methods optimized for determining similarities between sentences in the field of natural language processing of legal domains. After embedding legal sentences based on keywords using TF-IDF or semantic embedding using Universal Sentence Encoder, we propose an optimal way to search for data by combining BERT models to check similarities between sentences in the legal field.

Full-automatic Classification Technique of News Video using Domain Ontologies (온톨로지를 이용한 뉴스 비디오의 자동 분류 기법)

  • Kim Ha-Eun;Lee Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.193-195
    • /
    • 2005
  • 본 논문은 온톨로지를 이용하여 뉴스 비디오를 분야별로 자동으로 분류하는 효율적인 기법을 제안한다. 이를 위해서 뉴스 비디오를 파싱하여 키프레임(Key frame), 샷(Shot), 씬(Scene)으로 나누고 키프레임과 샷에서 특징 정보를 추출한다. 추출된 특징 정보를 이용하여 샷의 키워드 집합을 만들고 이를 이용하여 씬의 키워드 집합을 만든다. 그리고 씬의 키워드 집합을 어휘 온톨로지와 뉴스 온톨로지에 매칭(추론)하여, 씬의 분야를 결정한다. 또한 이렇게 결정된 분야를 기반으로 서로 유사한 씬들을 자동으로 그룹화하는 방법을 제안한다.

  • PDF

Efficient Synonym Detection Method through Keyword Extension (키워드 확장을 통한 효율적인 유의어 검출 방법)

  • Ji, Ki Yong;Park, JiSu;Shon, Jin Gon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.767-770
    • /
    • 2018
  • 인공지능의 발달로 사람이 사용하는 자연어 형태의 문장을 통해 정보를 주고받는 질의응답 시스템이 주목받고 있다. 이러한 질의응답 시스템은 자연어로 구성된 사용자의 질의문에서 의도를 정확하게 파악해야 한다. 단순히 질의어의 키워드에 의존한 검색은 단어의 중의성을 고려하지 않아 질의문의 의도를 정확히 파악하는 데 문제가 있다. 이런 문제점을 해결하기 위해 질의문의 의미와 맥락에 따른 연관성을 이용하여 유의어를 확장하는 방법이 연구되고 있다. 본 논문에서는 워드 임베딩을 통해 생성된 단어 유사도를 이용하여 질의문에서 추출된 키워드를 확장하는 방법을 제안한다.

A Study on Applications of Book Big Data to Map-Reduce Model by Keyword Mapping (키워드 매칭에 의한 도서 빅데이터의 맵리듀스 모델 적용에 관한 연구)

  • Kim, Tae-Jin;Lee, Jae-Woong;Seo, Jeong-Woo;Kim, Mihye;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.247-249
    • /
    • 2015
  • 본 논문에서는 하둡 플랫폼의 맵리듀스 모델에 기반하여 도서관 이용자들이 자주 대출하는 도서와 키워드 매칭을 통해 연관성이 높은 도서들을 추출하고 추천해 주는 도서 대출 추천 시스템을 구현 개발한다. 구현 개발된 시스템은 빅데이터의 특징을 갖는 도서관의 대출 로그 데이터로부터 타겟 도서와 유사한 키워드를 갖고 자주 대출되는 도서를 찾아 이용자에게 제공해 준다.

A Similarity Measurement and Visualization Method for the Analysis of Program Code (프로그램 코드 분석을 위한 유사도 측정 및 가시화 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.802-809
    • /
    • 2013
  • In this paper, we propose the similarity measurement method between two program codes by counting the frequency and length of continuous patterns of specifiers and keywords, which exist in two program codes. In addition, we propose the visualization method of this analysis result by formal concept analysis. Proposed method considers adjacencies of specifiers or keywords, which have not been considered in the previous similarity measurements. Proposed method can detect the plagiarism by analyzing the pattern in each function regardless of the order of function call and execution. In addition, the result of the similarity measurement is visualized by the lattice of formal concept analysis to increase the user understanding about the relations between program codes. Experimental results showed that proposed method succeeded in 96% plagiarism detections. Our method could be applied into the analysis of general documents.

Topic based Web Document Clustering using Named Entities (개체명을 이용한 주제기반 웹 문서 클러스터링)

  • Sung, Ki-Youn;Yun, Bo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • Past clustering researches are focused on extraction of keyword for word similarity grouping. However, too many candidates to compare and compute bring high complexity, low speed and low accuracy. To overcome these weaknesses, this paper proposed a topical web document clustering model using not only keyword but also named entities such as person name, organization, location, and so on. By several experiments, we prove effects of our model compared with traditional model based on only keyword and analyze how different effects show according to characteristics of document collection.

Ontology Knowledge Base Scheme for User Query Semantic Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식베이스 스키마 구축)

  • Doh, Hana;Lee, Moo-Hun;Jeong, Hoon;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The method of recent information retrieval passes into an semantic search to provide more accurate results than keyword-based search. But in common user case, they are still accustomed to using existing keyword-based search. Hence they are hard to create a typed structured query language. In this paper, we propose to ontology knowledge-base scheme for query interpretation of these user. The proposed scheme was designed based on the OWL-DL for description logic reasoning, it can provide a richer representation of the relationship between the object by using SWRL(Semantic Web Rule Language). Finally, we are describe the experimental results of the similarity measurement for verification of a user query semantic interpretation.

Development of the Pattern Matching Engine using Regular Expression (정규 표현식을 이용한 패턴 매칭 엔진 개발)

  • Ko, Kwang-Man;Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2008
  • In various manners, string pattern matching algorithm has been proven for prominence in speed of searching particular queries and keywords. Whereas, the existing algorithms are limited in terms of various pattern. In this paper, regular expression has been utilized to improve efficiency of pattern matching through efficient execution towards various pattern of queries including particular keywords. Such as this research would enable to search various harmful string pattern more efficiently, rather than matching simple keywords, which also implies excellent speed of string pattern matching compared to that of those existing algorism. In this research, the proposed string search engine generated from the LEX are more efficient than BM & AC algorithm for a string patterns search speed in cases of 1000 with more than patterns, but we have got similar results for the keywords pattern matching.